ECE 111: Handout \#14

Week \#14: ECE 343 Signals and Systems

Problem 1: Determine the transfer function from the differential equation

$$
y^{\prime \prime}+5 y^{\prime}+8 y=2 x^{\prime}+10 x
$$

Problem 2: Determine the differential equation which relates X and Y

$$
Y=\left(\frac{10 s+20}{s^{2}+6 s+5}\right) X
$$

Problem 3: Find $y(t)$

$$
\begin{aligned}
& Y=\left(\frac{10}{(s+1)(s+3)}\right) X \\
& x(t)=4 \cos (5 t)+2 \sin (5 t)
\end{aligned}
$$

Solutions

Problem 1: Determine the transfer function from the differential equation

$$
y^{\prime \prime}+5 y^{\prime}+8 y=2 x^{\prime}+10 x
$$

Assume all functions are in the form of

$$
y=e^{s t}
$$

Then

$$
\frac{d y}{d t}=s \cdot e^{s t}=s y
$$

$s Y$ mean the derivative of y

$$
\begin{aligned}
& s^{2} Y+5 s Y+8 Y=2 s X+10 X \\
& \left(s^{2}+5 s+8\right) Y=(2 s+10) X \\
& Y=\left(\frac{2 s+10}{s^{2}+5 s+8}\right) X
\end{aligned}
$$

Problem 2: Determine the differential equation which relates X and Y

$$
Y=\left(\frac{10 s+20}{s^{2}+6 s+5}\right) X
$$

Cross multiply

$$
\left(s^{2}+6 s+5\right) Y=(10 s+20) X
$$

$s Y$ mean the derivative of y

$$
y^{\prime \prime}+6 y^{\prime}+5 y=10 x^{\prime}+20 x
$$

Problem 3: Find $\mathrm{y}(\mathrm{t})$

$$
\begin{aligned}
& Y=\left(\frac{10}{(s+1)(s+3)}\right) X \\
& x(t)=4 \cos (5 t)+2 \sin (5 t)
\end{aligned}
$$

Solution: Express as phasors

$$
\begin{aligned}
& s=j 5 \\
& X=4-j 2 \\
& Y=\left(\frac{10}{(s+1)(s+3)}\right)_{s=j 5}(4-j 2) \\
& Y=(-0.249-j 0.226)(4-j 2) \\
& Y=-1.448-j 0.407
\end{aligned}
$$

which is phasor shorthand for $\mathrm{y}(\mathrm{t})$

$$
y(t)=-1.488 \cos (5 t)+0.407 \sin (5 t)
$$

