ECE 111: Handout \#16

ECE 331 Energy Conversion

1) Determine the series ($\mathrm{Rs}, \mathrm{jXs}$) and parallel ($\mathrm{Rp}, \mathrm{jXp}$) model for the load (Z)

- $\operatorname{Vin}=9600 \mathrm{~V}$
- Power = 200 Watts
- $\mathrm{pf}=0.05$

Equations:

$$
\begin{aligned}
& P=V I p f \\
& Z=\left|\frac{V}{I}\right| \angle \theta \\
& p f=\cos \theta
\end{aligned}
$$

2) Redraw the circuit as seen by the load (transfer everything to the right side of the transformer)

- Determine the volages and current as seen by the load

Solution

1) Determine the series ($\mathrm{Rs}, \mathrm{jXs}$) and parallel ($\mathrm{Rp}, \mathrm{j} \mathrm{Xp}$) model for the load (Z)

- $\operatorname{Vin}=9600 \mathrm{~V}$
- Power $=200$ Watts
- $\mathrm{pf}=0.05$

Equations:

$$
\begin{aligned}
& P=V \cdot I \cdot p f \\
& 200 W=9600 V \cdot I \cdot 0.05 \\
& I=416.7 m A \\
& Z=\frac{V}{I} \angle \arccos (p f) \\
& Z=\frac{9600 V}{416.7 m A} \angle \arccos (0.05) \\
& Z=23,040 \angle 87.134^{0} \\
& Z=1152+j 23,011 \quad \text { series model } \\
& R s=1152 \\
& j X s=j 23.01 k \\
& \frac{1}{Z}=2.170 \cdot 10^{-6}-j 4.335 \cdot 10^{-5} \\
& R_{p}=\frac{1}{2,170 \cdot 10^{-6}}=460 \mathrm{k} \Omega \\
& j X_{p}=\frac{1}{-j 4.335 \cdot 10^{-5}}=j 23.068 \mathrm{k} \Omega
\end{aligned}
$$

2) Redraw the circuit as seen by the load (transfer everything to the right side of the transformer)

- Determine the volages and current as seen by the load

By voltage division

$$
\begin{aligned}
& V_{1}=\left(\frac{103}{103+1}\right) 120 \mathrm{~V}=118.846 \mathrm{~V} \\
& V_{2}=\left(\frac{100}{100+3+1}\right) 120 \mathrm{~V}=115.385 \mathrm{~V}
\end{aligned}
$$

The current is

$$
I=\frac{120 \mathrm{~V}}{104 \Omega}=1.154 \mathrm{~A}
$$

Solution

