ECE 111 - Homework \#1

Week \#1: Matlab Introduction. Due Monday, January 15th
Please submit via BlackBoard

Bison Academy: Homework Sets \& Solutions

1) What are the solutions to

$$
\begin{aligned}
& y=\left(\frac{\sin (x)}{x^{2}+1}\right) \\
& y=\cos (x)
\end{aligned}
$$

hint: See homework \#2, problem \#4 solutions for Spring 2023

Roots to a Polynomial

2) Use the roots() command to find the roots to
a) $y=x^{3}-13 x^{2}+35 x+49$
b) $y=x^{4}-26 x^{3}+125 x^{2}+572 x+420$
c) $y=x^{5}+15 x^{4}+58 x^{3}-120 x^{2}-1184 x-1920$

Matlab as a Graphing Calculator: (Thermistor equations)

Assume a thermistor (temperature sensor) and voltage divider have the following relationship:

$$
\begin{aligned}
& R=2000 \cdot \exp \left(\frac{4200}{T+273}-\frac{4200}{298}\right) \Omega \\
& V=\left(\frac{R}{R+4000}\right) \cdot 10 V
\end{aligned}
$$

3) Determine the resistance and voltage if

- $\mathrm{T}=-20$ degrees C
- $\mathrm{T}=+20$ degrees C

4) Plot the resistance vs. temperature for $-20 \mathrm{C}<\mathrm{T}<+20 \mathrm{C}$. From the graph, determine

- The temperature if $\mathrm{R}=5,000 \mathrm{Ohms}$
- The temperature if $\mathrm{R}=10,000 \mathrm{Ohms}$

5) Plot the votlage vs. temperature for $-20 \mathrm{C}<\mathrm{T}<+20 \mathrm{C}$. From the graph, determine

- The temperature if $\mathrm{V}=8.00$ Volts
- The temeprature if $\mathrm{V}=6.00$ Volts

For-Loops

6) A and B are playing a game

- A rolls five 10 -sided dice and takes the sum $(\mathrm{A}=5 \mathrm{~d} 10)$
- B rolls four 12 -sided dice and takes the sum $\quad(B=4 d 12)$.

Whoever has the higher total wins. Determine the odds that A wins / ties / loses using a Monte-Carlo simulation with 100,000 games.
7) A and B are playing a match. For any given game,

- A has a 55% chance of winning (+1 point for A), and
- A has a 45% chance of losing (+1 point for B).

If the match consists of seven games, determine the odds that A wins the match

- A has 4 or more points

While-Loops

8) A and B are playing a match. For any given game,

- A has a 55% chance of winning (+1 point for A), and
- A has a 45% chance of losing (+1 point for B).

If the match continues until one player is up by 3 or more games, determine

- The odds that A wins (A has 3 or more points than B)
- Using a Monte-Carlo simulation with 100,000 matches

9) A and B are playing a match. For any given game,

- A has a 55% chance of winning (+1 point for A), and
- A has a 45% chance of losing (+1 point for B).

If the match continues until one player

- Wins at least 4 games, and
- Is up by 2 games

Determine the odds that player A wins the match using a Monte-Carlo simulation with 100,000 matches

