Math 105: Trigonometry and fminsearch

Objectives

- Relate $\sin ()$ and $\cos ()$ to unit circles
- Convert from rectangular to polar coordinates
- Calculate the position of a robotic arm (forward kinematics)
- Calculate the angles of a robotic arm (inverse kinematics)
- Use the Matlab function fminsearch()

Introduction

From Wikipedia,
Trigonometry (from Greek trigonon, "triangle" and metron, "measure"[1]) is a branch of mathematics that studies relationships involving lengths and angles of triangles. The field emerged in the Hellenistic world during the 3 rd century BC from applications of geometry to astronomical studies. www.Wikipedia.com
Trigonometry is fundamental to electrical and computer engineering.

- Power is transmitted as a 60 Hz sine wave
- Analysis of filters, such as the bass boost on your stereo, relies upon expressing an audio signal in terms of a sum of sinusoids,
- AC motors, such as a quad-copter motor, are driven by sinusoidal signals where the frequency of the sine wave determines the speed of the motor
- Analysis of systems described by differential equations (read: everything) depends upon being able to use complex numbers - which have their origin in $\sin ()$ and $\cos ()$ functions.

Likewise, trigonometry may seem like an archaic topic which deals only with architecture and triangles. Actually, it's much more than that.

$\boldsymbol{\operatorname { s i n }}(), \boldsymbol{\operatorname { c o s }}(), \boldsymbol{\operatorname { t a n }}()$

Trigonometry is the study of the unit circle. If you draw a unit circle and take a point an angle θ from the x -axis, then

- The x-coordinate of that point is $\cos (\theta)$
- The y-coordinate of that point is $\sin (\theta)$
- If you extend the line from the origin to the point on the unit circle to $x=1$, the length of the line to the x -axis is $\tan (\theta)$

It you let the angle increase with time as

$$
\theta=\omega t
$$

then you get a sine wave. In Matlab:

```
>> t = [0:0.01:6]';
>> w = 1;
>> x = cos(w*t);
>> y = sin(w*t);
>> plot(t,x,t,y)
>> xlabel('Time (seconds)');
```


$1 \mathrm{rad} / \mathrm{sec}$ sine wave: $\cos (\mathrm{t})$ (blue) and $\sin (\mathrm{t})($ red $)$
Note that

- $\cos ()$ and $\sin ()$ go between -1 and +1 . This isn't surprising since these are just the x and y coordinates as you go around the unit circle.
- The period of $\cos ()$ and $\sin ()$ is 2π (6.28 seconds).

The default units for $\cos ()$ and $\sin ()$ is radians. If you want to use degrees, the conversion is

$$
360 \text { degrees }=2 \pi \text { radians }
$$

$$
1 \frac{\mathrm{cycle}}{\text { second }}=1 H z=2 \pi \frac{\mathrm{rad}}{\mathrm{sec}}
$$

Pretty much, anything English isn't natural. You'll find in engineering that the math works out a lot nicer if you use natural units - such as radians.

If you increase the frequency, you get a sine wave that is quicker. A 1 Hz sine wave ($2 \pi \mathrm{rad}$ 至ec $)$ looks like the following:

```
>> w = 2*pi;
>> x = cos(w*t);
>> y = sin(w*t);
>> plot(t,x,'b',t,y,'r')
>> xlabel('Time (seconds)');
```


1 Hz Sine Wave: $\cos (6.28 \mathrm{t})$ (blue) and $\sin (6.28 \mathrm{t})$ (red)

Amplitude, Frequency, Phase

A generalized sine wave can be written as

$$
y(t)=a \cos (\omega t)+b \sin (\omega t)
$$

or

$$
y(t)=r \cos (\omega t+\theta)
$$

Here

- r is the amplitude
- ω is the frequency in $\mathrm{rad} / \mathrm{sec}$, and
- θ is the phase shift, also in radians.

The relationship between rectangular and polar form is

$$
\begin{aligned}
& r^{2}=a^{2}+b^{2} \\
& \tan (\theta)=\frac{b}{a}
\end{aligned}
$$

Conversion from rectangular form and polar form for sinusoids

For example,

$$
y=5 \cos (6 t-1)
$$

looks like the following:

```
>> t = [0:1/250:1]';
>> y = 5* cos(6*t-1);
>> plot(t,y);
```


Plot of $y(t)=5 \cos (6 t-1)$
The peak is 5 Volts
The frequency is $6 \mathrm{rad} / \mathrm{sec}$, meaning the period is

- period $=6 T=2 \pi$
- $T=\frac{2 \pi}{6}=1.047 \mathrm{sec}$

The phase shift is 1 radian, meaning

- The delay is $\left(\frac{1 \mathrm{radian}}{6 \mathrm{rad} / \mathrm{sec}}\right)=\frac{1}{6} \mathrm{sec}=0.166 \mathrm{sec}$

This is important in electrical and computer engineering:

- Given the amplitude, frequency, and phase shift, you can sketch a sine wave
- Given a sine wave, you can determine the amplitude, frequency, and phase shift.

Sine Waves and Circles

What shouldn't be surprising is that if you plot $\cos ()$ vs $\sin ()$ you get a circle
$\gg \mathrm{x}=\cos \left(\mathrm{w}^{*} \mathrm{t}\right)$;
$\gg y=\sin (w * t) ;$
>> plot (x,y)

$\cos (\mathrm{t})$ vs. $\sin (\mathrm{t})$ produces the unit circle
It also shouldn't surprising that

$$
\cos ^{2}(t)+\sin ^{2}(t)=1
$$

That just says that the circle you're using has a radius of one. That's sort of the definition of $\cos ()$ and $\sin ()$.

Polar Coordinates

Given any point, you can express it in Cartesian coordinates with its x and y values:

$$
\mathrm{P}=(\mathrm{x}, \mathrm{y})
$$

You can also express this in polar form as

$$
\mathrm{P}=r \angle \theta
$$

A point P can be expressed in Cartesian coordinates (x, y) or polar coordinates $(r \Delta \theta)$

The conversion from one to the other is

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

or

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \theta=\arctan (y, x)
\end{aligned}
$$

There are two $\arctan ()$ functions in Matlab

- $\operatorname{atan}(\mathrm{y} / \mathrm{x})$ returns the angle from $-\mathrm{pi} / 2$ to $+\mathrm{pi} / 2$ (-90 degrees to +90 degrees)
- atan2(y, x) returns the angle

The problem with atan is that if both x and y are negative, the signs cancel. To get the actual angle, you need to use atan2()

Calculations using Polar Coordinates

Using polar-to-rectangular conversions, you can add vectors in polar form. The trick is to convert to rectangular form. Then, the x and y coordinates add.

For example, determine y :

$$
y=5 \angle 20^{0}+8 \angle-63^{0}+4 \angle 37^{0}
$$

To determine y, calculate the x and y coordinate of each term

$$
r \angle \theta=(r \cos \theta, r \sin \theta)
$$

In Matlab: (note: Matlab uses radians for angles, not degrees)

```
>> x1 = 5*cos(20*pi/180)
x1 = 4.6985
>> y1 = 5*sin(20*pi/180)
y1 = 1.7101
>> x2 = 8* cos(-63*pi/180)
x2 = 3.6319
>> y2 = 8*sin(-63*pi/180)
y2 = -7.1281
>> x3 = 4*cos(37*pi/180)
x3 = 3.1945
>> y3 = 4*sin(37*pi/180)
y3 = 2.4073
```

The sum is the sum of the x-portion and the sum of the y-portion:
$\gg X=x 1+x 2+x 3$
$X=11.5249$
$\gg Y=y 1+y^{2}+y^{3}$
$Y=-3.0107$
The sum is

$$
5 \angle 20^{0}+8 \angle-63^{0}+4 \angle 37^{0}=(11.5249,-3.0107)
$$

Robotics: Forward Kinematics

Forward kinematics is the problem of computing where the tip of a robotic arm is given the joint angles.
For example, assume

- A 2-dimensional robot
- With three rotational joints, and
- Each link has a length of 1 m .

Problem 1: Determine the tip position when the joint angles are $\{30$ degrees, 40 degrees, 50 degrees $\}$

```
function [x3, y3] = ForwardKinematics(q1, q2, q3)
q1 = q1 * pi/180;
q2 = q2 * pi/180;
q3 = q3 * pi/180;
L1 = 1;
L2 = 1;
L3 = 1;
x0 = 0;
y0 = 0;
x1 = L1*cos(q1);
y1 = L1*sin(q1);
x2 = x1 + L2* cos(q1+q2);
y2 = y1 + L2*sin(q1+q2);
x3 = x2 + L3*}\operatorname{cos}(q1+q2+q3)
y3 = y2 + L3*sin(q1+q2+q3);
plot([x0,x1,x2,x3],[y0,y1,y2,y3],'b.-');
xlim([0,3]);
ylim([0,3]);
pause(0.01);
end
>> [Tx,Ty] = ForwardKinematics(30,40,50)
Tx = 0.7080
Ty = 2.3057
```


Problem 2: Determine the tip position when the joint angles are

- $\mathrm{Q} 1=30^{*} \sin (\mathrm{t})$ degrees
- $\mathrm{Q} 2=40 * \sin (2 \mathrm{t})$ degrees
- $\mathrm{Q} 3=50 * \sin (3 \mathrm{t})$ degrees

Solution:

```
t = [0:0.01:10]';
q1 = 30*sin(t);
q2 = 40*sin(2*t);
q3 = 50*sin(3*t);
Tx = 0*t;
Ty = 0*t;
for i=1:length(t)
    [Tx(i),Ty(i)] = RRR(q1(i), q2(i), q3(i));
        pause(0.01);
end
plot(Tx, Ty)
```


Problem 3: Robot Animation. Show the motion of the robot with the joint angles given in problem \#2

```
function [x3, y3] = RRR(q1, q2, q3)
q1 = q1 * pi/180;
q2 = q2 * pi/180;
q3 = q3 * pi/180;
L1 = 1;
L2 = 1;
L3 = 1;
x0 = 0;
y0 = 0;
x1 = L1*cos(q1);
y1 = L1*sin(q1);
x2 = x1 + L2*cos(q1+q2);
y2 = y1 + L2*sin(q1+q2);
x3 = x2 + L3*cos(q1+q2+q3);
y3 = y2 + L3*sin(q1+q2+q3);
plot([x0,x1,x2,x3],[y0,y1,y2,y3],'b.-');
xlim([-3,3]);
ylim([-3,3]);
end
```


Calling Sequence:

Robotics: Inverse Kinematics \& fminsearch()

Forward kinematics determines the tip position of a robotic arm given the joint angles. For the three-link arm from before, the solution is

$$
\begin{aligned}
& x_{3}=\cos \left(\theta_{1}\right)+\cos \left(\theta_{1}+\theta_{2}\right)+\cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right) \\
& y_{3}=\sin \left(\theta_{1}\right)+\sin \left(\theta_{1}+\theta_{2}\right)+\sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right)
\end{aligned}
$$

Inverse kinematics determines the joint angles of a robotic arm given the tip position. This is not that easy to do using algebra. Fortunately, there's a solution in Matlab: the function fminsearch()

Fminsearch() is a really useful Matlab command which finds the minimum of a function. For example, find the square root of two.

To use fminsearch, first create a function whose minimum is your solution. To find the square root of two, you could use this:

```
function [J] = root2(x)
    e = x*x - 2;
    J = e^2;
    end
```

(save this as root2.m). This function has a minimum when $x=\sqrt{2}$. From the command window, you can guess and guess again to find the solution (the value of x which results in a result of zero):

```
>> root2(3)
ans = 49
>> root2(2)
ans = 4
>> root2(1.4)
ans = 0.0016
```

or you can let Matlab guess for you

```
>> [z,e] = fminsearch('root2',4)
z = 1.4143
e = 1.5665e-008
```

The first line calls function fmsearch, telling it to optimize function root2, starting with an initial guess of four.
fmsearch then returns the best it could do:

$$
\mathrm{z}=1.4143,
$$

and the resulting minimum cost if cound determine

$$
e=1.556 e-008
$$

That's probably not real impressive, so let's look at another example: determine the shape of a hanging chain

- Length $=13$ meters
- $y(0)=7$
- $y(10)=5$

A hanging chain minimizes the potential energy of the chain. Since this is a minimization problem, it's perfect for fminsearch.

First, write a cost function which

- Is passed your guess for the y-coordinate of the chain from 1 to 9
- Computes the total lenngth of the chain (it should be 13 meters), and
- The total potential energy of the chain

```
function [ J ] = cost_chain( z )
    % [Z,e] = fminsearch('cost_chain', 10*rand(9,1))
    % ECE 111 Lecture #3: fminsearch
    % Shape of a hanging chain that's 13 meters long
        Y = [7,z(1),z(2),z(3),z(4),z(5),z(6),z(7),z(8),z(9),5]';
        PE = sum(Y);
        L = 0;
        for i=2:11
        L = L + sqrt(1 + (Y(i) - Y(i-1))^2);
    end
    E = 13-L;
    J = PE + 100*E*E;
    plot([0:10]', Y, '.-');
    ylim([0,10]);
    pause(0.01);
end
```

Start with an initial guess for the shape of the chain:

```
>> y = 10*rand (9,1);
>> cost_chain(y)
ans=2.8806e+004
```


Let fminsearch try to optimize this funciton

```
>> [z,e] = fminsearch('cost_chain', y)
Exiting: Maximum number of function evaluations has been exceeded
    - increase MaxFunEvals option.
    Current function value: 41.064042
```

Let fminsearch keep going, picking up where you left off:
>> [z,e] = fminsearch('cost_chain', z)
What you have is a numeric solution to the shape of a hanging chain.

Example 3: Find the joint angles that place a RRR robot at ($x=1, y=2$).

$$
\begin{aligned}
& x_{3}=1=\cos \left(\theta_{1}\right)+\cos \left(\theta_{1}+\theta_{2}\right)+\cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right) \\
& y_{3}=2=\sin \left(\theta_{1}\right)+\sin \left(\theta_{1}+\theta_{2}\right)+\sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right)
\end{aligned}
$$

Solution: Create a function which

- Is passed the joint angles
- Computes the tip position,
- Computes the error in the tip position, and
- Returns the sum-squared error

```
% Tip position
Tx = 1;
Ty = 2;
[x3, y3] = RRR(Q(1), Q(2), Q(3));
pause(0.01);
Ex = x3 - Tx;
Ey = y3 - Ty;
J = Ex^2 + Ey^2;
end
```

Check by calling this function from the command window:

```
>> cost_RRR([120,-40,-50])
ans = 0.3350
```


Optimize the function by using fminsearch()

```
>> [Q,e] = fminsearch('cost_RRR',[120,-40,-50])
Q = 115.8522 -53.1532 -50.4906
e = 3.4795e-013
```

One set of joint angles which place the tip at $(x=1, y=2)$ is

- $\mathrm{q} 1=115.8522$ degrees
- $q 2=-53.1532$ degrees
- $\mathrm{q} 3=-50.4906$ degrees
(there are other solutions)

Summary

- Trig is all about circles
- With sine and cosine functions, you can convert to and from polar coordinates
- With sine and cosine functions, you can compute the tip position of a robotic arm (forward kinematics), and
- With fmisearch, you can compute the joint angles which place the tip position of a robot

