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Complex Numbers

Complex Numbers on an HP42 Calculator

Introduction

Numbers matter.  Numbers make a difference.  The existence of mathematical oddities can determine the

fate of empires.

The Number Zero:  Take for example the number zero.  You might wonder why we have the number

zero and if it's needed.  Actually, you can get by without the number zero.  The Roman Empire, for

example, was vast with commerce that stretched from Scotland to Persia - and the Romans did that

without the number zero.

Rome was a vast empire with commerce stretching from England to Persia

Romans represented numbers with letters:

I = 1

V = 5

X = 10

L = 50

C = 100

The number 27, for example would be represented as XXVII (10 + 10 + 5 + 1 + 1).  We know the Romans

knew how to do addition, subtraction, multiplication, and division using their number system:  you can't

run an empire of that scale without such operations.  That doesn't mean it was easy.  Take, for example,

the sum of two numbers:

XXVII + CIX = ?
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or the product of two numbers:

XXVII * CIX = ?

In contrast, the Arabic number system uses place holders:  each digit represents an increasing power of

ten.  With this number system, you need the number zero.  For example 106 apples is very different from

16 apples.  You need that zero to represent zero tens as well as to shift the 1 over to the hundreds place.

With Arabic numbers, addition, subtraction become much easier.  Multiplication and division remains a

challenge, but it is far easier than with Roman numbers.

Negative Numbers:  As a second example, consider negative numbers.  What does negative one apple

mean?  Why do we even have negative numbers?

Like the number zero, negative numbers are not necessary.  They do make some problems much easier to

solve, however.

We've seen that when writing voltage node equations.  If you have a circuit, you may or may not know

which way the current is flowing by inspection.  If you don't mind negative numbers, it doesn't matter.

Simply sum the currents from a node to zero and solve.  If it turns out a current was flowing the opposite

direction of what you assumed, it's not a problem:  the current simply shows up as a negative numbers.

Another example comes from the field of accounting.  Florence, for example, was a world power in the

13th century.  That is a remarkable feat considering that Florence is a small city in Italy, competing

against much larger countries such as Spain, France, and England.

One reason for this was the invention of the double-entry bookkeeping system.  This allowed merchants in

Florence to keep track of expenses (debits, akin to negative numbers) and credits for a given venture.  The

Florentine merchants would likewise focus on investments where credits exceeded debits (i.e. had a

positive profit).  That's in contrast to other countries whose merchants focused on how much money came

in when a ship entered port, ignoring how much was spent on the whole endeavor.

Republic of Florence: a small city state competing for European dominance (Wikipedia)
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Complex Numbers:   The first part of Circuits I deals with the DC analysis of resistor circuits.  When

dealing DC signals, real numbers work just fine:

Voltages can be expressed by a real number

Currents can be expressed with real numbers, and

Resistance's can be expressed with real numbers.

Towards the end of Circuits I and throughout Circuits II, however, we start to work with sinusoidal

signals.

The signals sin(t) and cos(t) look like the following:
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sin(t) and cos(t).  Note that the period is 2 pi

These can be combined to create a generalized sinusoid:

x(t) = a cos (ωt) + b sin (ωt)

which can also be written as

x(t) = r cos (ωt + θ)

(more on this later).  

What this means is, unlike DC, you need three parameters to define a sinusoid:

The frequency (w), and

The cosine and sine terms (a, and b), or

The amplitude and phase shift ( r and  )θ

The frequency isn't a problem:  if you have a linear circuit, the frequency at all points will be the same as

the input. Likewise we typically know what w is.  The challenge with circuit analysis with sinusoidal

inputs is how to find the other two terms.

This is where complex numbers come into play.  If you don't mind using complex numbers, AC analysis

of circuits is just like DC analysis - only your answers will be complex numbers.  Likewise, all ECE

courses past Circuits I rely upon using complex numbers.

NDSU Complex Numbers ECE  111

3 June 24, 2023



In short, ECE majors use complex numbers - probably more than any other major.  Fortunately, Matlab

(and HP calculators) have no problem working with complex numbers.

Complex Numbers

Unlike real numbers, complex numbers have two terms.  This allows us to represent the cosine and sine

terms for a sinusoid with a single (albeit complex) number.

The basic idea behind complex numbers is to define a term, j, as1

j ≡ −1

Any given number can then have a real and a complex part

x = a + jb

You can express this number in rectangular form ( a + jb) or polar form

x = c∠θ

a + jb

b

a

c

real

imag

Complex Number (a + jb) can also be expressed as (c∠θ)

Note: The polar form is shorthand notation and actually means

c∠θ ≡ c ⋅ e jθ

The complex exponential has two terms

e jθ = cos (θ) + j sin (θ)

This leads to Euler's identity

cos θ =
ejθ+e−jθ

2

sin θ =
ejθ−e−jθ

2j

1 Math majors call this term i for imaginary.  In ECE, i means current, so we use the letter j to

represent the complex part of a number.
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Proof:  Substitute for the complex exponential




ejθ+e−jθ

2

 =

1

2
((cos θ + j sin θ) + (cos (−θ) + j sin (−θ)))

Using some trig identities

cos (−θ) = cos θ

sin (−θ) = −sin θ

gives

= 


1

2

 (cos θ + j sin θ + cos θ − j sin θ)

=
1

2
(2 cos θ)

= cos θ

For the sine term:




ejθ−e−jθ

2j


 = 


1

2j


 ((cos θ + j sin θ) − (cos (−θ) + j sin (−θ)))

= 


1

2j


 (cos θ + j sin θ − cos θ − (−sin θ))

= 


1

2j


 (j sin θ + j sin θ)

= sin θ

Inputting Complex Numbers into Matlab

With Matlab, the default value of j is .  If you redefine j, this no longer holds, but you can restore this−1

as

>> j = sqrt(-1)

To input a number into Matlab in rectangular form, simply use the j variable

>> A = 2 + j*3

A =   2.0000 + 3.0000i

You can also input a variable in polar form.   is input asB = 3∠1.5

>> B = 3 * exp(j*1.5)

B =   0.2122 + 2.9925i

(note: Matlab uses radians for its angle units).
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The default display in Matlab is rectangular units.  To convert to polar, use the abs and angle

>> abs(B)

ans =     3

>> angle(B)

ans =    1.5000

Inputting Complex Numbers into an HP42

This uses the complex key.  In rectangular mode (yellow - MODES - RECT)

the y register becomes the real part

the x register becomes the complex part.

To input the number 2 + j3, press

MODES
RECT
2
enter
3
complex

In polar mode (yellow - MODES - POLAR)

the y register becomes the magnitude

the x register becomes the angle (in the current units degrees / rad / grad)

To input the number 5∠270

MODES
POLAR
5
enter
27
complex

Addition, Subtraction, Multiplication, and Division

With complex numbers, you can add, subtract, multiply, and divide just like real numbers:

Addition:  For addition

The real parts add, and

The complex parts add.

Example:

(a1 + jb1) + (a2 + jb2) = (a1 + a2) + j(b1 + b2)

NDSU Complex Numbers ECE  111

6 June 24, 2023



Subtraction:  Again, the real parts subtract and the complex parts subtract

(a1 + jb1) − (a2 + jb2) = (a1 − a2) + j(b1 − b2)

Note: Addition and subtraction also work in polar form.  This requires a polar to rectangular conversion:

r1∠θ1 + r2∠θ2 = (r1cos θ1) + j(r1sin θ1) + (r2cos θ2) + j(r2sin θ2)

        = (r1cos θ1 + r2cos θ2) + j(r1sin θ1 + r2sin θ2)

Moral:  Addition and subtraction is easier in rectangular form.  Or use a calculator that can add and

subtract complex numbers.

Multiplication:  Multiplication is a little trickier, but the result is a complex number.

(a1 + jb1)(a2 + jb2) = a1a2 + ja1b2 + ja2b1 + j2b1b2

Note that j2 = -1

(a1 + jb1)(a2 + jb2) = (a1a2 − b1b2) + j(a1b2 + a2b1)

Polar form actually works better for multiplication

r1∠θ1 ⋅ r2∠θ2 = r1e jθ1 ⋅ r2e jθ2

= r1r2e jθ1 e jθ2

Using the property

eaeb = ea+b

gives

r1∠θ1 ⋅ r2∠θ2 = r1r2e jθ1+jθ2

r1∠θ1 ⋅ r2∠θ2 = r1r2∠(θ1 + θ2)

When you multiply complex numbers

The magnitude multiplies and 

The angles add
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Complex Conjugate:  The complex conjugate of a complex number is

(a + jb)
∗

≡ a − jb

The complex conjugate has the property that the product of a complex number with its complex conjugate

is a real number, equal to the magnitude squared:

(a + jb) ⋅ (a − jb) = a2 + b2

Division:  Division also results in a complex number but takes even more computations.  It uses the

complex conjugate of the denominator:




a1+jb1

a2+jb2


 = 


a1+jb1

a2+jb2






a2−jb2

a2−jb2




               =



(a1a2+b1b2)+j(−a1b2+a2b1)

a2
2
+b2

2




               =



a1a2+b1b2

a2
2
+b2

2


 + j




−a1b2+a2b1

a2
2
+b2

2




Polar form is again simpler for division




r1∠θ1

r2∠θ2


 = 


r1e

jθ1

r2e
jθ2




               = 


r1

r2


 e jθ1 e−jθ2

               = 


r1

r2


 e jθ1−kθ2

               = 


r1

r2


∠(θ1 − θ2)

The division of complex numbers is

The ratio of the magnitudes and 

The difference in the angles.
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Sample Problems

Problem 1:  Find y

y = 


(2+j3)(4+j5)+(6+j7)

8+j9



By Hand:  (pretty painful)

= 


((8−15)+j(12+10))+(6+j7)

(8+j9)




= 


(−7+j22)+(6+j7)

(8+j9)




= 


−1+j29

8+j9





8−j9

8−j9



= 


(−8+261)+j(232+9)

64+81



= 


253+j241

145



= 


253

145

 + j

241

145



1.7448 + j1.6621

Using Matlab

>> y = ( (2+j*3)*(4+j*5) + (6+j*7) ) / (8 + j*9)

y =   1.7448 + 1.6621i

Using an HP42

2
enter
3
complex
4
enter
6
complex
*
6
enter
7
complex
+
8
enter
9
complex
/

ans = 1.7448 + j1.6621
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Partial Fraction Expansion with Real Poles

A common problem in ECE is to expand a function  by its roots.  For example, find




2x+3

(x+1)(x+2)(x+3)


 = 


a

x+1

 + 

b

x+2

 + 

c

x+3



Solution #1: (the hard way) Place the right side over a common denominator and match coefficients.

= 


a

x+1





(x+2)(x+3)

(x+2)(x+3)


 + 

b

x+2





(x+1)(x+3)

(x+1)(x+3)


 + 

c

x+3





(x+1)(x+2)

(x+1)(x+2)




This places all terms over a common denominator.  The numerator is then

2x + 3 = a(x + 2)(x + 3) + b(x + 1)(x + 3) + c(x + 1)(x + 2)

2x + 3 = a(x2 + 5x + 6) + b(x2 + 4x + 3) + c(x2 + 3x + 2)

This gives three equations for three unknowns.

Matching the x2 terms:

0 = a + b + c

x1 terms:

2 = 5a + 4b + 3c

x0 terms:

3 = 6a + 3b + 2c

Place in matrix form










1 1 1

5 4 3

6 3 2



















a

b

c









=










0

2

3










Solve in Matlab

>> A = [1,1,1;5,4,3;6,3,2]

     1     1     1
     5     4     3
     6     3     2

>> B = [0;2;3]

     0
     2
     3
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>> inv(A)*B

a    0.5000

b    1.0000

c   -1.5000

so




2x+3

(x+1)(x+2)(x+3)


 = 


0.5

x+1

 + 

1

x+2

 + 

−1.5

x+3



Solution #2: (cover-up method).  Equals is a powerful symbol: it means both sides are identical

everywhere.

The right side blows up (goes to infinity) near x = {-1, -2, -3}.  The left side has to match.

Near x = -1, only the first term matters since it's going to infinity while the other terms are finite.  So

x→−1
lim 


2x+3

(x+1)(x+2)(x+3)


 =

x→−1
lim 


a

x+1



Cancel (cover up) the (x+1) term and evaluate

a = 


2x+3

(x+2)(x+3)




x=−1

= 0.5

Similarly, near x = -2, only the second term (b) matters on the right.

x→−2
lim 


2x+3

(x+1)(x+2)(x+3)


 =

x→−2
lim 


b

x+2



Cancel (cover up) the (x+1) term and evaluate

b = 


2x+3

(x+1)(x+3)




x=−2

= 1

Near x = -3, only the third term (c) matters:

x→−3
lim 


2x+3

(x+1)(x+2)(x+3)


 =

x→−3
lim 


c

x+3



c = 


2x+3

(x+1)(x+2)




x=−3

= −1.5

Either method works - the cover-up method is a lot easier.  The cover-up method also works in Matlab.

For the limit, take a number close to the point you're evaluating (perturb by 1e-9).  Solve for {a, b, c}
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>> x = -1 + 1e-9;
>> a = (2*x + 3)/( (x+1)*(x+2)*(x+3) ) * (x+1)

a =    0.5000

>> x = -2 + 1e-9;
>> b = (2*x + 3)/( (x+1)*(x+2)*(x+3) ) * (x+2)

b =    1.0000

>> x = -3 + 1e-9;
>> c = (2*x + 3)/( (x+1)*(x+2)*(x+3) ) * (x+3)

c =   -1.5000

Partial Fraction with Complex Numbers

Placing all terms over a common denominator works, but is that much harder with complex numbers.  The

cover-up method is the same either way.

Example:  Determine {a, b, c}




5x+7

(x+1+j3)(x+1−j3)(x+5)


 = 


a

x+1+j3

 + 

b

x+1−j3

 + 

c

x+5



Solving

a = 


5x+7

(x+1−j3)(x+5)




x=−1−j3

= 0.3600 + j0.3533

b = 


5x+7

(x+1+j3)(x+5)




x=−1+j3

= 0.3600 − j0.3533

c = 


5x+7

(x+1+j3)(x+1−j3)




x=−5

= −0.7200

Solving using Matlab

>> x = -1 - j*3 + 1e-9;
>> a = (5*x+7) / ( (x+1+j*3)*(x+1-j*3)*(x+5) ) * (x+1+j*3)

a =   0.3600 + 0.3533i

>> x = -1 + j*3 + 1e-9;
>> a = (5*x+7) / ( (x+1+j*3)*(x+1-j*3)*(x+5) ) * (x+1-j*3)

a =   0.3600 - 0.3533i

>> x = -5 + 1e-9;
>> a = (5*x+7) / ( (x+1+j*3)*(x+1-j*3)*(x+5) ) * (x+5)

a =   -0.7200

>> 
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More Fun with Complex Numbers

Note:  These use the properties

ln (ex) = x

e ln(x) = x

(ea)b
= eab

Example 1:  Find y:

y = (2 + j3)
(4+j5)

Solution:  Convert to polar form (using radians)

2 + j3 = 3.6056∠0.9828

            = e ln(3.6056) ⋅ ej0.9828

            = e1.2825+j0.9828

Raise to the power

            = (e1.2825+j0.9828)
(4+j5)

            = e(0.2159+j10.3453)

Separate

             = e0.2159e j10.3435

             = 1.2410 ⋅ (cos (10.3425) + j sin (10.3435))

             = 1.2410 ⋅ (−0.6068 − j0.7942)

             = −0.7530 − j0.9864

Check in Matlab

>> y = (2 + j*3) ^ (4 + j*5)

y =  -0.7530 - 0.9864i

Note: Matlab was way easier.
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Check on an HP42:

2
enter
3
complex
4
enter
5
complex
y^x

ans = -0.7530 - j0.9864

Example 2: Find y:

y = cos (2 + j3)

Use Euler's identity

cos (2 + j3) = 


1

2

 (e(2+j3) + e j(2+j3))

                     = 


1

2

 ((e2e j3) + (ej2e−3))

= 


1

2

 (e2 ⋅ (cos(3) + j sin(3)) + e−3 ⋅ (cos(2) + j sin(2))

= 


e2cos(3)+e−3cos(2)

2

 + j

e2sin(3)+e−3sin(2)

2



Check in Matlab

>> cos(2 + j*3)

ans =  -4.1896 - 9.1092i

Check on an HP42

2
enter
3
complex
COS

ans = -4.1896 - j9.1092
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Find y:

y = ln(2 + j3)

Express as an exponential

2 + j3 = 3.6056∠0.9828

            = e ln(3.6056)+j0.9828

ln(2 + j3) = ln(3.6056) + j0.9828

Check in Matlab

>> log(2 + j*3)

ans =   1.2825 + 0.9828i

Check with an HP42

2
enter
3
ln

ans =   1.2825 + 0.9828i

Moral #1:  Pretty much anything you do with real numbers you can do with complex numbers.  The

answer will be complex though.

Moral #2:  When dealing with complex numbers, it is a lot easier to use Matlab or an HP calculator than

doing it by hand...

Summary:

Complex numbers allow you to represent something with two degrees of freedom

Addition, subtraction, multiplication, and division all work with complex numbers

Evaluating equations with complex numbers by hand is really painful.

Matlab and HP calculators don't mind complex numbers:  they work with them just as easily as they

do with real numbers.
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