Signals and Systems

Fourier Transform: Solving differential equations when the input is periodic

Objectives

- Determine a least-squares curve fit for a function using a sinusoidal series (Fourier series)
- Determine the output of a filter when the input is periodic (but not a sine wave)

Problem:

One model for the cardiovascular system is a Winkessel model:

Assume you know $I(t)$ (corresponding to the blood the heart pumps out). Find $V(t)$.
Using s-notation, the impedance of R, L, and C become

$$
\begin{aligned}
& R \rightarrow R \\
& L \rightarrow j \omega L=L s \\
& C \rightarrow \frac{1}{j \omega C}=\frac{1}{C s}
\end{aligned}
$$

The resistance of the above circuit is then

$$
\begin{aligned}
& Z=\left(\frac{1}{1 / C s}+\frac{1}{L s+R}\right)^{-1} \\
& Z=\left(C s+\frac{1}{L s+R}\right)^{-1} \\
& Z=\left(\frac{C s(L s+R)+1}{L s+R}\right)^{-1} \\
& Z=\left(\frac{L s+R}{C L s^{2}+C R s+1}\right)
\end{aligned}
$$

Meaning

$$
\begin{aligned}
& V=I R \\
& V=\left(\frac{L s+R}{C L s^{2}+C R s+1}\right) I
\end{aligned}
$$

If you assume

- $\mathrm{R}=1$
- $\mathrm{L}=0.1$
- $\mathrm{C}=1$
you get

$$
V=\left(\frac{s+10}{s^{2}+10 s+10}\right) I
$$

Case 1: Sinusoidal Input

Find $V(t)$ assuming

$$
I(t)=3 \sin (10 t)
$$

This is a phasor problem. Using phasor notation, voltages and currents are represented as

$$
a+j b \rightarrow a \cos (\omega t)-b \sin (\omega t)
$$

so

$$
I(t)=0-j 3
$$

The frequency is $10 \mathrm{rad} / \mathrm{sec}$

$$
s=j 10
$$

so the output is then

$$
\begin{aligned}
& V=\left(\frac{s+10}{s^{2}+10 s+10}\right) I \\
& V=\left(\frac{s+10}{s^{2}+10 s+10}\right)_{s=j 10} \cdot(-j 3) \\
& V=(0.0055-j 0.1050) \cdot(-j 3) \\
& V=-0.3149-0.0166 \mathrm{i}
\end{aligned}
$$

meaning

$$
v(t)=-0.3149 \cos (10 t)+0.0166 \sin (10 t)
$$

or if you prefer polar form

$$
V=0.3154 \angle-177^{\circ}
$$

meaning

$$
v(t)=0.3154 \cos \left(10 t-177^{0}\right)
$$

Either answer is valid.

Case 2: Input is Periodic but Not a Sinusoid

Suppose instead I(t) is periodic every $\frac{2 \pi}{10}$ seconds

$$
I\left(t+\frac{2 \pi}{10}\right)=I(t)
$$

and

$$
I(t)= \begin{cases}1 & 0<t<0.2 \\ 0 & \text { otherwise }\end{cases}
$$

$I(t)$ vs. time. Note that $I(t)$ is period every $\frac{2 \pi}{10}$ seconds

Find $V(t)$ assuming $I(t)$ and $V(t)$ are related by

$$
V=\left(\frac{s+10}{s^{2}+10 s+10}\right) I
$$

Now find $V(t)$

Solution 1: Least Squares Curve Fitting:

To solve this problem, change it so that $\mathrm{I}(\mathrm{t})$ is a sinusoid, or more accurately, a bunch of sinusoids. Then you can use the previous solution for each sinusoidal input. Since $I(t)$ is periodic in $\frac{2 \pi}{10}$ seconds, express $\mathrm{I}(\mathrm{t})$ in terms of sine waves which are also periodic in $\frac{2 \pi}{10}$ seconds (i.e. harmonics)

$$
I(t) \approx a_{0}+a_{1} \cos (10 t)+b_{1} \sin (10 t)+a_{2} \cos (20 t)+b_{2} \sin (20 t)+\ldots
$$

In theory, you should go out to infinity. For the sake of space, let's just go out to 5 terms.

Using least squares, we can solve for the constants.
First, write this in matrix form

$$
I(t) \approx(1 \cos (10 t) \sin (10 t) \cos (20 t) \sin (20 t))\left|\begin{array}{l}
a_{0} \\
a_{1} \\
b_{1} \\
a_{2} \\
b_{2}
\end{array}\right|
$$

or in matrix form

$$
Y=B A
$$

where B is your basis function and A is you unknow constants. B is not invertable, so multiply both sides by B^{T}

$$
B^{T} Y=B^{T} B A
$$

Solve for A

$$
A=\left(B^{T} B\right)^{-1} B^{T} Y
$$

In Matlab:

```
>> t = [0:0.0001:1]' * 2*pi/10;
>> I = 1 .* (t < 0.2);
>> B = [t.^0, cos(10*t), sin(10*t), cos(20*t), sin(20*t)];
>> A = inv(B'*B)*B'*I
a0 0.3186
a1 0.2895
b1 0.4513
a2 -0.1208
b2 0.2634
>> plot(t,I,t,B*A);
```


3-Cycles for $\mathrm{I}(\mathrm{t})$ (blue) and it's approximation using 5 terms (red): $\mathrm{DC}+10 \mathrm{rad} / \mathrm{sec}+20 \mathrm{rad} / \mathrm{sec}$ terms
What this means is

$$
I(t) \approx 0.3186+0.2895 \cos (10 t)-0.4513 \sin (10 t)-0.1208 \cos (20 t)-0.2634 \sin (20 t)
$$

Note: The approximation gets better if you add more terms. If you go out to the 20th harmonic, this plot looks like the following:

3-Cycles for $\mathrm{I}(\mathrm{t})$ (blue) and it's approximation using 20 harmonics (40 terms $+\mathrm{DC}-$ red)
Adding more terms makes the analysis more accurate - but more tedious. It's kind of a judgement call: how many terms you need to include for the results to be accurate enough.

Often times, just a few harmonics are used:

- Signals tend to have most of their energy in the low-frequency terms (DC abnd1st harmonc typically)
- Most systems are low-pass filters: they tend to attenuate high-frequency signals.

This results in the higher harmonics starting out small and getting smaller after filtering. It looks like you need a lot of terms to do Fourier analysis - but in acuality you normally only need a few (1 to 3).

Solution 2: Fourier Transform

There's actually an easier way to get each term. Assume that

$$
I(t) \approx a_{0}+a_{10} \cos (10 t)+b_{10} \sin (10 t)+a_{20} \cos (20 t)+b_{20} \sin (20 t)
$$

Note that

$$
\begin{aligned}
& \operatorname{avg}(\cos (a t))=0 \\
& \operatorname{avg}(\sin (a t))=0
\end{aligned}
$$

You can thus determine the DC term (a0) by

$$
a_{0}=\operatorname{avg}(I(t))
$$

Also note that all sine waves are orthogonal

$$
\begin{aligned}
& \operatorname{avg}(\sin (a t) \cdot \cos (b t))=0 \\
& \operatorname{avg}(\sin (a t) \cdot \sin (b t))=\left\{\begin{array}{cc}
\frac{1}{2} & a=b \\
0 & \text { otherwise }
\end{array}\right. \\
& \operatorname{avg}(\cos (a t) \cdot \cos (b t))=\left\{\begin{array}{cc}
\frac{1}{2} & a=b \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Thus

$$
\begin{aligned}
& a_{10}=2 \cdot \operatorname{avg}(\cos (10 t) \cdot I(t)) \\
& b_{10}=2 \cdot \operatorname{avg}(\sin (10 t) \cdot I(t))
\end{aligned}
$$

$$
\begin{aligned}
a_{20} & =2 \cdot \operatorname{avg}(\cos (20 t) \cdot I(t)) \\
b_{20} & =2 \cdot \operatorname{avg}(\sin (20 t) \cdot I(t))
\end{aligned}
$$

etc. In Matlab:

```
>> a0 = mean(I)
    0.3186
>> a10 = 2*mean(cos(10*t) .* I)
    0.2896
>> b10 = 2*mean(sin(10*t) .* I)
    0.4513
>> a20 = 2*mean(cos(20*t) .* I)
```

```
    -0.1207
>> b20 = 2*mean(sin(20*t) .* I)
    0.2634
```

Note that you get the exact same answer you got using least squares curve fitting. So, $\mathrm{I}(\mathrm{t})$ contains three frequencies (five terms):

- A DC term:

$$
I_{0}(t) \approx 0.3186
$$

- A term at $10 \mathrm{rad} / \mathrm{sec}$

$$
I_{10}(t) \approx 0.2895 \cos (10 t)-0.4513 \sin (10 t)
$$

- A term at $20 \mathrm{rad} / \mathrm{sec}$

$$
I_{20}(t) \approx 0.1208 \cos (20 t)-0.2634 \sin (20 t)
$$

In Matlab:

```
% Start with the DC term...
IO = a0;
% add in the 10 rad/sec term...
I10 = a10*cos(10*t) + b10*sin(10*t);
% add in the 20 rad/sec term...
I20 = a20* cos(20*t) + b20*sin(20*t);
% plot I(t) alongs with it's approximation taken out to 20 rad/sec
plot(t,I,t,I0 + I10 + I20)
```

This gives same results as before.

	a 0	a 1	b 1	a 2	b 2
Least Squares Solution	0.3186	0.2895	0.4513	-0.1208	0.2634
Fourier Transform Solution	0.3186	0.2896	0.4513	-0.1207	0.2634

Fourier Transforms is just curve fitting where you use sinusoids for the basis.

Finding $\mathbf{V}(\mathrm{t})$:

Using Fourier Transforms, you can convert a periodic signal into a sum of sinusoids. For our system

$$
V=\left(\frac{s+10}{s^{2}+10 s+10}\right) I
$$

By using Fourier Transforms, I(t) can be expressed as

$$
I(t) \approx 0.3186+0.2895 \cos (10 t)-0.4513 \sin (10 t)-0.1208 \cos (20 t)-0.2634 \sin (20 t)
$$

To find $\mathrm{V}(\mathrm{t})$, treat this as three separate problems: one at each frequency.

- $I_{1}(t)=0.3186$
- $I_{2}(t)=0.2895 \cos (10 t)-0.4513 \sin (10 t)$
- $I_{3}(t)=-0.1208 \cos (20 t)-0.2634 \sin (20 t)$

Phasor analuysis allows us to find $\mathrm{V}(\mathrm{t})$ for each separate input. Add up the results and you have the total outout, $\mathrm{V}(\mathrm{t})$.

To do this, set up a table: one column for each frequency. Analyze the circuit for each input separately

	I1(t)	I2(t)	I3(t)
Frequency: s	$\mathrm{s}=0$	$\mathrm{s}=\mathrm{j} 10$	$s=j 20$
$\mathrm{i}(\mathrm{t})$	0.3186	$0.2895 \cos (10 t)-0.4513 \sin (10 t)$	$-0.1208 \cos (20 \mathrm{t})-0.2634 \sin (20 \mathrm{t})$
I(s): Phasor representation for $\mathrm{i}(\mathrm{t})$ note: $\mathrm{a}+\mathrm{jb}$ means $\mathrm{a} \cos (\mathrm{wt})-\mathrm{b} \sin (\mathrm{wt})$	0.3186	$0.2895+\mathrm{j} 0.4513$	$-0.1201+\mathrm{j} 0.2634$
$G(s)=\left(\frac{s+10}{s^{2}+10 s+10}\right)_{s=j \omega}$	1.000	0.0055 - j0.1050	0.0005 - j0.0510
$\mathrm{V}(\mathrm{~s})=\mathrm{G}(\mathrm{~s}) * \mathrm{I}(\mathrm{~s})$ phasor representation for $\mathrm{v}(\mathrm{t})$	0.3186	0.0490 - j0.0279	0.0135 - j0.0060
$\mathrm{v}(\mathrm{t})$	0.3186	$0.0490 \cos (10 t)+0.0279 \sin (10 t)$	$0.0135 \cos (20 t)-0.0060 \sin (20 t)$

If you add up all of the inputs $(\mathrm{I} 1(\mathrm{t})+\mathrm{I} 2(\mathrm{t})+\mathrm{I} 3(\mathrm{t}))$, you get the total input.
If you add up all the outputs, you get the total output

$$
v(t)=0.3186+0.0490 \cos (10 t)+0.0279 \sin (10 t)+0.0135 \cos (20 t)-0.0060 \sin (20 t)
$$

Once you understand phasors, you can analyze any circuit or differential equation with sinusoidal inputs. Fourier Transfoms are a way to convert any periodic signal into a sum of sinusoidal inputs.

A step-by-step procedure to analyze this circuit at each frequency follows. It's really just filling in the above table...

Detailed Analysis at Each Frequency

Case 1:

$$
I(t)=0.3186
$$

Using phasor analysis

$$
\begin{aligned}
& I=0.3186 \\
& s=0 \\
& V=\left(\frac{s+10}{s^{2}+10 s+10}\right)_{s=0} \cdot I \\
& V=(1) \cdot(0.3186) \\
& v(t)=0.3186
\end{aligned}
$$

Case 2:

$$
I(t)=0.2895 \cos (10 t)-0.4513 \sin (10 t)
$$

Using phasor analysis

$$
\begin{aligned}
& I=0.2895+j 0.4513 \\
& s=j 10 \\
& V=\left(\frac{s+10}{s^{2}+10 s+10}\right)_{s j 10} \cdot I \\
& V=(0.0055-j 0.1050) \cdot(0.2895+j 0.4513) \\
& V=-0.0458-0.0329 \mathrm{i} \\
& v(t)=-0.0458 \cos (10 t)+0.0329 \sin (10 t)
\end{aligned}
$$

Case 3:

$$
I(t)=0.1208 \cos (20 t)-0.2634 \sin (20 t)
$$

Using phasor analysis

$$
I=0.1208+j 0.2634
$$

$$
\begin{aligned}
& s=j 20 \\
& V=\left(\frac{s+10}{s^{2}+10 s+10}\right)_{s=j 20} \cdot I \\
& V=(0.0005-j 0.0510) \cdot(0.1208+j 0.2634) \\
& V=-0.0135+\mathrm{j} 0.0060 \\
& v(t)=-0.0135 \cos (20 t)-0.0060 \sin (20 t)
\end{aligned}
$$

To get the total input, add up $I(t)$ for part $a), b)$, and c)
To get the total output, add up $V(t)$ for part $a), b)$, and c)

$$
\begin{aligned}
& v(t)=v_{0}(t)+v_{10}(t)+v_{20}(t) \\
& v(t)=0.3186-0.0458 \cos (10 t)+0.0329 \sin (10 t)-0.0135 \cos (20 t)-0.0060 \sin (20 t)
\end{aligned}
$$

This looks like the following:

$\mathrm{I}(\mathrm{t})$ (blue) and $\mathrm{V}(\mathrm{t})($ red $)$ - shown for three cycles

Matlab Solution

In Matlab, this is actually a lot easier (hint: use this method for solving the homework)
First, input the function. Assume the period is $\frac{2 \pi}{10}$

```
t = [0:0.0001:1]' * 2*pi/10;
x = 1 * (t < 0.2);
```

a) At $\mathrm{s}=0$ (DC),

```
s = 0;
a0 = mean(x);
IO = a0
    0.3186 ( the DC component of I(t) )
G0 = (s + 10 ) / ( s^2 + 10*s + 10 )
    1 ( the gain at s = 0 )
VO = GO * IO
    0.3186 ( the DC component of V(t) )
```

b) At $10 \mathrm{rad} / \mathrm{sec}$ (1 st harmonic)

```
s = j*10;
a10 = 2*mean(x .* cos(10*t));
b10 = 2*mean(x .* sin(10*t));
I10 = a10 - j*b10
    0.2896 - 0.4513i (the phasor representation for I(t) at IO rad/sec )
G10 = ( s + 10 ) / ( s^2 + 10*s + 10 )
    0.0055 - 0.1050i (the gain at }s=j10
V10 = G10 * I10
    -0.0458 - 0.0329i (the phasor representation for V(t) at 10 rad/sec)
```

c) At $20 \mathrm{rad} / \mathrm{sec}$:

```
s = j*20;
a20 = 2 * mean( x .* cos(20*t) );
b20 = 2 * mean( x .* sin(20*t) );
I20 = a20 - j*b20
    -0.1207 - 0.2634i (the phasor representation for I(t) at 20 rad/sec )
G20 = ( s + 10 ) / ( s^2 + 10*s + 10 )
    0.0005 - 0.0510i (the gain at }s=j20
V20 = G20 * I20
    -0.0135 + 0.0060i (the phasor representation for V(t) at 20 rad/sec )
```

Finally, convert from phasor notoation back to time domain:

```
% Start with the DC term...
V = V0;
% add in the 10 rad/sec term...
V = V + real(V10)*cos(10*t) - imag(V10)*sin(10*t);
% add in the 20 rad/sec term...
V = V + real(V20)*cos(20*t) - imag(V20)*sin(20*t);
plot(t,I,t,V)
```


$\mathrm{I}(\mathrm{t})$ (blue) and $\mathrm{V}(\mathrm{t})($ red) - shown for three cycles (same results as before)

