Introduction to Matlab
 ECE 111 Introduction to ECE Jake Glower - Week \#1

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Becoming familiar with MATLAB

- Using the command window
- Using scripts
- Plotting with Matlab
- Random numbers in Matlab
- If-Statements
- For-Loops
- While-Loops
- Monte-Carlo Simulations

MATLAB SIMULINK

General environment and the console

Startup Screen:

- I usually close everything down except the command window

Command Window

Matlab works like a calculator

- Solve

```
(2 + 3 ) * 5
```

- Solve
$\mathrm{Y}=5 * \cos (10 * \tan (3))$
You type it the way it looks:

Matlab Function Names

- pi
- $\exp (x)$
- $10^{\wedge} \mathrm{x}$
- $\log (\mathrm{x})$
- $\log 10(x)$
- $\sin (x)$
- $\cos (x)$
- $\tan (\mathrm{x})$
- $\operatorname{asin}(x)$
- $\operatorname{acos}(\mathrm{x})$
- $\operatorname{atan}(y, x)$
- + many more

π

e^{x}
10^{x}
$\ln (x)$
$\log _{10}(x)$
$\sin (x)$ units $=$ radians
$\cos (x) \quad " \quad "$
$\tan (x) \quad " \quad "$
$\arcsin (x)$
$\arccos (x)$
$\arctan (y / x)$

MATLAB 7.12 .0 (R2011a)

包
Shortcuts 』 How to Add \boxtimes What's New
$\gg \exp (2)$
ans $=$
7.3891
$\gg \log (10)$
ans $=$
2.3026
$\gg \sin (1)$
ans $=$
0.8415
$\gg \cos (2)$
ans $=$
-0.4161
$\gg \operatorname{asin}(0.6)$
ans $=$
0.6435
$f x \ggg \mid$

Order of Operations

- 1 st : ^
- 2nd: *, /
- 3rd: +, -

Equations are executed

- By order of operations, then
- Left to right

Paranthesis never hurt,

- They can aviod confusion

Matlab as a Calculator

You can define variables as you go

- 1st character must be a letter
- 2nd onward can be letters or numbers
- Case sensitive

Example: Light Sensor

$$
\begin{aligned}
& R=\left(\frac{2200}{(l u x)^{0.6}}\right) \Omega \\
& V=\left(\frac{R}{1000+R}\right) 10 V
\end{aligned}
$$

Find R and V @ 10 Lux

```
) MATLAB 7.12.0 (R2011a)
File Edit Debug Desktop Window Help
```



```
Shortcuts [`] How to Add \\ What's New
    >> lux = 10
    lux =
        1 0
    >> R = 2200 / (lux ^ 0.6)
    R =
    552.6150
    >> V = R / (1000 + R) * 10
    V =
    3.5593
fx>>
```


Doing Several Operations at Once

Matlab is a matrix language

```
[ start of a matrix
next column (a space also works)
next row
end of matrix.
transpose
```

Multiplication, Power

- *, ^
- Matrix operations (coming soon)

Dot-Notation

- .* ./ ,^
- Element-by-element operations
- Allows you to do several operations at once
-) MATLAB 7.12 .0 (R2011a)
$\mathrm{V}=$
3.5593
2.6718
2.2231

Formatting Output

- Terminate a line with a semi-colon if you don't what the result displayed
- Leave off the semi-colon if you do want to see the result

```
format short
pi
    3.1416
format long
pi
    3.141592653589793
format shorteng
pi^30
    821.2893e+012
```

```
) MATLAB 7.12.0 (R2011a)
File Edit Debug Desktop Window Help
```



```
    Shortcuts त How to Add W What's New
    >> lux = [10,20,30]';
    >> format long
    >> R = 2200 ./ (lux .^ 0.6)
    R =
        1.0e+002 *
            5.526150149321077
            3.645899419073986
            2.858577216671873
    >> format short e
    >> V = R ./ (1000 + R) * 10
    V =
        3.5593e+000
        2.6718e+000
    2.2231e+000
fx>> |
```


Matlab as a Graphing Calculator

Matlab has pretty good graphics
This is useful if you want to know what happens over a range of values.

Example: Find R for $1<\operatorname{lux}<100$

$$
R=\left(\frac{2200}{(l u x)^{0.6}}\right) \Omega
$$

Linear spacing

- 1 to 100 lux, step size $=0.1$
lux = [1 : 0.1 : 100]';
Log spacing from 10^{-2} to 10^{3} with 100 points lux $=\operatorname{logspace}(-2,3,100)$ ';
Shortcuts How to Add What's New
$\gg \operatorname{lux}=[1: 0.1: 100]^{\prime} ;$
$\gg R=2200 . /($ lux . ^ 0.6);
\gg plot (lux, R);
\gg xlabel ("lux");
\gg ylabel ("Ohms");
$>$ grid
$f x \gg$
4 Start

Matlab as a Graphing Calculator

Graphs are useful

- They show you how the two variables are related
- They allow you to determine V over a range of lux
- They allow you to determine lux if you know V

Example: If you read 2.00 Volts, what is the light level?

- Read it off the graph
- light = 36 lux (approx)

Shortcuts © How to Add © What's New
>> lux = [1:0.1:100]';
>> R = 2200 ./ (lux .^ 0.6);
$\gg \mathrm{V}=\mathrm{R} . /(1000+\mathrm{R})$ * 10 ;
>> plot(lux, V) ;
>> xlabel('lux');
>> ylabel('Volts');
$\gg \operatorname{ylim}([0,7])$

Figure 1 - ㄷ
File Edit View Insert Tools Desktop Window Help


```
File Edit Debug Desktop Window Help
```

```
File Edit Debug Desktop Window Help
```


Plotting Functions in Matlab:

Matlab has some pretty good graphics capabilities.

```
Matlab Plot Command x axis y axis type of function
            plot(x,y)
    semilogx(x,y)
    semilogy(x,y)
        loglog(x,y)
    subplot(abc)
                linear linear y=ax+b
                                log() linear y =a\operatorname{log}(bx)
                                linear log() y =a bx
                                log() }\quad\operatorname{log}()\quady=a\cdot\mp@subsup{b}{}{x
                            Create 'a' rows, 'b' columns of graphs.
                            Starting at #c
```

```
x = [0:1:10]';
```

x = [0:1:10]';
y = 3*x + 4;
y = 3*x + 4;
subplot(311)
plot(x,y);
subplot(312)
plot(x,Y,'.');
subplot(313);
plot(x,Y,'.-');

```


\section*{Matlab Help}

\section*{If you forget how to use a function, type help}
```

) MATLAB 7.12.0 (R2011a)
File Edit Debug Desktop Window Help

```

```

Shortcuts
 How to Add \] What's New

 >> help plot
 PLOT Linear plot.
 PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix,
 then the vector is plotted versus the rows or columns of the matrix,
 whichever line up. If X is a scalar and Y is a vector, disconnected
 line objects are created and plotted as discrete points vertically at
 x.
 PLOT(Y) plots the columns of Y versus their index.
 If Y is complex, PLOT(Y) is equivalent to PLOT(real(Y),imag(Y)).
 In all other uses of PLOT, the imaginary part is ignored.
 Various line types, plot symbols and colors may be obtained with
 PLOT(X,Y,S) where S is a character string made from one element
 from any or all the following 3 columns:
 | b | blue | - | point | - | solid |
| :--- | :--- | :--- | :--- | :---: | :--- |
| g | green | 0 | circle | : | dotted |
| r | red | x | x-mark | .- | dashdot |
| c | cyan | + | plus | -- | dashed |
| m | magenta | \star | star | (none) | no line |

```

\section*{Multiple Plots on the same graph:}
plot (x1,y1, \(x 2, y 2, x 3, y 3)\)
plot(x, [y1,y2,y3])
Invest \(\$ 1000\) for 10 years at...
- \(1 \%\) interest
- \(3 \%\) interest
- \(6 \%\) interest
- \(9 \%\) interest
```

t = [0:0.01:10]';
y1 = 1000 * exp(0.01*t);
y3 = 1000 * exp(0.03*t);
y6 = 1000 * exp(0.06*t);
y9 = 1000 * exp(0.09*t);
% Method \#1
plot(t,y1,t,y3,t,y6,t,y9)
% Method \#2
plot(t,[y1,y3,y6,y9])

```


\section*{Polynomials}
poly（［a，b，c］）
－Give a polynomial with roots at（a，b，c） \(\operatorname{roots}([a, b, c, d])\)
－Find the roots of the polynomial
\[
a x^{3}+b x^{2}+c x+d=0
\]
```

poly([1,2,3])
1 -6 lll
y=\mp@subsup{x}{}{3}-6\mp@subsup{x}{}{2}+11x-6
=(x-1)(x-2)(x-3)
roots([1,-6,11,-6])
3.0000
2.0000
1.0000

```
File Edit Debug Deskkop Window Help

Shortcuts \(\pi\) How to Add \(\pi\) What's New
    \(\gg \operatorname{poly}([1,2,3])\)
    ans =
\(\begin{array}{llll}1 & -6 & 11 & -6\end{array}\)
    \(\gg \operatorname{roots}([1,-6,11,-6])\)
    ans =
    3.00000000000002
    1.999999999999998
    1.000000000000000
\(f x \gg\)
4 Start

MATLAB 7．12．0（R2011a）

Note: The roots are the zero crossings
- Roots \(=\{1,2,3\}\)
\(x=[0: 0.01: 4]\) ';
\(y=x . \wedge 3-6 *(x . \wedge 2)+11 * x-6 ;\)
plot(x,y);
grid on


\section*{Change the Problem to Fit the Solution}
roots() finds the zero crossings of a polynomial
\[
0=x^{3}+5 x^{2}+7 x+2
\]

If you want to find a different answer, change the problem
\[
6=x^{3}+5 x^{2}+7 x+2
\]
becomes
\[
0=\left(x^{3}+5 x^{2}+7 x+2\right)-(6)
\]

Note that
- \(6=0 x^{3}+0 x^{2}+0 x+6\)
- You have to use matricies with similar dimensions

\section*{-) MATLAB 7.12.0 (R2011a)}

\section*{File Edit Debug Desktop Window Help}

Shortcuts 지 How to Add 지 What's New
\(\gg \operatorname{roots}([1,5,7,2])\)
ans \(=\)
\(-2.6180\)
\(-2.0000\)
\(-0.3820\)
\(\gg \operatorname{roots}([1,5,7,2]-[0,0,0,6])\)
ans \(=\)
\(-2.7144+1.4000 i\)
\(-2.7144-1.4000 i\)
0.4288
\(\gg x=\operatorname{ans}(3)\)
\(\mathrm{X}=\)
0.4288
\(\gg x^{\wedge} 3+5^{\star} x^{\wedge} 2+7 \star x+2\)
\(\operatorname{ans}=\)
6.0000

\section*{Matlab Scripts}

Instead of typing the same set of commands over-and-over again, you can place these Matlab commands in a file (a Matlab script)
- The file must have a .m extension
- You can execute this script using the green arrow
- You can execute this script by calling it from the command window


\section*{Random Numbers: Rolling Dice}

Shortcuts \(\pi\) How to Add \(\quad\) What's New
    \(\gg\) rand
    \(\gg\) rand
    ans =
                            0.6463
    \(\gg\) randn ( 1,3 )
    ans \(=\)
        \(1.0933 \quad 1.1093-0.8637\)
    >> ceil(8*rand ( 1,3 ) )
    ans \(=\)
        \(\begin{array}{ll}6 & 6\end{array}\)
\(f x \gg \mid\)

\section*{If-Statement}
```

if - end
if - else - end
if - elseif - end

```

Do a set of operations if a statement is true Valid boolean statements:
```

($\mathrm{N}==3$)
$N=3$
($\mathrm{N}>{ }^{\text {> }}$)
$N>3$
(N >= 3)
$N \geq 3$
(N != 3)
$N \neq 3$
($\mathrm{N}>=3$) * $(\mathrm{N}<=7)$
$3 \leq N \leq 7$

```

Example: Roll a loaded die
- \(20 \%\) of the time you always roll a 6
- The rest of the time it's a fair die
- Each time you run the script, you get a new die roll

\section*{For-Loops}
```

for i=1:100
Matlab commands
end

```

Repeat a set of commands a fixed number of times
Terminate with an end statement

Example: Cast a level-8 Fireball
- y = 8d6
- Use loaded dice ( \(20 \%\) chance of a 6 )
- Each time you run the script, you get a different result


\section*{Monte-Carlo Simulations}
- One extermely useful capability of Matlab is to run Monte Carlo simulations
- To find the probability of an event, repeat an experiment 100,000 times
- The probability is then roughly the percentage of the time the outcome happened

Procedure:
- Write a script to run an experiment one time
- Once that works, repeat 100,000 times
- (place the code inside a for-loop)

\section*{Example: Ice Storm}

The Dungeons and Dragon's spell Ice Storm does 6-40 damage
- The sum of two 8 -sided dice and four 6 -sided dice
- \(\mathrm{y}=2 \mathrm{~d} 8+4 \mathrm{~d} 6\)

Determine...
- The probability of doing N damage
- The probability that \(\mathrm{N}>30\)


Solution: Step 1
- Create a file IceStorm.m
- Find y \(=2 \mathrm{~d} 8+4 \mathrm{~d} 6\)

Note that every time you run this script, you get a different answer
- it's random


Solution: Step 2
- Repeat 100,000 times
- Keep track of how many times you did y damage

The odds of doing 30 damage
```

>> Damage(30) / 100000
ans = 0.0297

```

The odds of doing 30 or more damage
```

>> sum(Damage(30:40) / 100000)
ans=0.0866

```


\section*{Monte-Carlo Example \#2}
\(A\) and \(B\) are playing a match
- A has a \(60 \%\) chance of winning any given game.
- What is the probability that A will win the match?

Start by playing a single match
- A won the match 5-2
- Different result each time you run the script


Now repeat for 100,000 matches
- A wins 70,913 times in 100,000 matches
- A has roughly a \(70.9 \%\) chance of winning any given match

\section*{While-Loop}
```

while(statement is true)
do the following
end

```

Example: Count how many times you roll a die until you get a 1

\section*{While-Loop (cont'd)}

What is the chance that it will take 7 or more rolls to get a 1 ?
Repeat 100,000 times
- Monte-Carlo Simulation

In 100,000 trials
- It took 7 or more rolls 33,343 times
- There is about a \(33.34 \%\) chance it will take 7 or more rolls to get a 1
-) MATLAB 7.12.0 (R2011a)
File Edit Debug Desktop Window Help

Shortcuts \(\pi\) How to Add What's New
    \(\gg X=0 ;\)
    for \(n=1: 1 e 5\)
        \(\mathrm{N}=0\);
        \(\mathrm{d} 6=0 ;\)
        while ( \(\mathrm{d} 6 \sim=1\) )
        \(\mathrm{d} 6=\) ceil ( \(6^{\text {trand }}\) );
        \(\mathrm{N}=\mathrm{N}+1\);
        end
        if \((N>=7)\)
        \(\mathrm{X}=\mathrm{X}+1 ;\)
        end
    end
    \(\gg \operatorname{disp}(X)\)
                            33343
    \(\operatorname{disp}(\mathrm{X} / 1 \mathrm{e} 5)\)
    0.3334
fx >>
\(\gg X=0\);
for \(n=1: 1 e 5\)
\(\mathrm{N}=0\);
\(\mathrm{d} 6=0\);
while ( \(\mathrm{d} 6 \sim=1\) ) \(\mathrm{d} 6=\operatorname{ceil}\left(6^{\star}\right.\) rand); \(\mathrm{N}=\mathrm{N}+1\); end if ( \(\mathrm{N}>=7\) ) \(\mathrm{X}=\mathrm{X}+1\); end
end
\(\gg \operatorname{disp}(\mathrm{X})\)
33343
\(\gg \operatorname{disp}(\mathrm{X} / 1\)
0.3334
\(f x \gg\)

\section*{While-Loop (cont'd)}

Player A and B are playing a match
- Player A has a \(60 \%\) chance of winning any given game
- When a player is up 3 games, the match is over What is the chance player A wins the match?

Solution: Play a single match
- If A wins, A gains 1 point.
- If A loses, A loses 1 point.
- Keep playing until A is up 3 or down 3


\section*{Win-by-3 (cont'd)}

Now play 100,000 matches
- A wins about \(77 \%\) of the time with this format
- TV hates this format since a match can take a very long time


\section*{While-Loop: Tennis}

Assume A and B are playing a match
- A has a \(60 \%\) chance of winning any given game
- If a player wins 4 games and is up by 2 games, the match is over.
- Otherwise, the match continues until a player is up two games.

Find the probability that A wins the match

Solution: Start with playing a single match
- A wins 4-1
- A wins 6-4
- A loses 8-6
- A wins 4-1


Now repeat for 100,000 matches
Result is A wins about 73,500 times
- A has about a \(73.5 \%\) chance of winning the match

Results will vary each time you run this script
- it's random

To find the actual odds, you need to use a student-t test (week \#15 of ECE 111)

\section*{Summary}

Matlab is a fairly friendly computer language
You can use the command window as a calculator
- Adds, subtracts, multiplies, divides

Scripts allow you to try \& modify code as you write it

For-loops let you run code multiple times
- Monte-Carlo simulations...

If-statements allow you to check for conditions
- If the sum is 25 or more...

While-loops let you run code until an event happens
- repeat until you roll a 1

\section*{Matlab Commands}

\section*{Display}
- format short
- format long
- format short e
- format long e
display results to 4 decimal places
display results to 13 decimal places
display using scientific notation
display using scientific notation

\section*{Polynomials}
- poly(x)
- \(\operatorname{roots}(\mathrm{x})\)
- \(\operatorname{conv}(x, y)\)

\section*{Analysis}
- \(\operatorname{sqrt}(x)\)
- \(\log (x)\)
- \(\log 10(x)\)
- \(\exp (x)\)
- \(\exp 10(x)\)
- \(\operatorname{abs}(x)\)
- \(\operatorname{round}(x)\)
- floor(x)
- ceil(x)
- \(\operatorname{real}(x)\)
- \(\operatorname{imag}(x)\)
- \(\operatorname{abs}(x)\)
- angle(x)
- unwrap(x)
- \(\operatorname{sum}(x)\)
- \(\operatorname{prod}(x)\)
square root of \(x\)
log base e
log base 10
\(e^{\wedge} x\)
\(10^{\wedge} x\)
|x|
round to the nearest integer
round down (integer value of \(x\) )
round up to the next integer
real part of a complex number
imaginary part of a complex number
absolute value of \(x\), magnitude of a complex number
angle of a complex number (answer in radians)
remove the discontinuity at pi (180 degrees) for a vector of angles
sum the columns of \(x\)
multiply the columns of \(x\)

\section*{Trig Functions}
- \(\sin (\mathrm{x})\) \(\sin (\mathrm{x})\) where x is in radians
- \(\cos (x) \quad \cos ()\)
- \(\tan (x) \quad \tan ()\)
- \(\operatorname{asin}(x) \quad \arcsin (x)\)
- \(\operatorname{acos}(x) \quad \arccos (x)\)
- \(\operatorname{atan}(x) \quad \arctan (x)\)
- \(\operatorname{atan} 2(y, x) \quad\) angle to a point \((x, y)\)

\section*{Probability and Statistics}
- factorial(x)
x !
- \(\operatorname{gamma}(\mathrm{x})\)
x!
- \(\operatorname{rand}(\mathrm{n}, \mathrm{m})\)
- \(\operatorname{randn}(\mathrm{n}, \mathrm{m})\)
- length(x)
- mean(x)
- \(\operatorname{std}()\)
create an nxm matrix of random numbers between 0 and 1 create an nxm matrix of random numbers with a normal distribution return the dimensions of \(x\) mean (average) of the columns of \(x\) standard deviation of the columns of \(x\)

\section*{Display Functions}
- \(\operatorname{plot}(x)\)
- \(\operatorname{plot}(x, y)\)
- semilogx \((x, y)\)
- semilogy (x,y)
- \(\log \log (x, y)\)
- mesh(x)
- contour(x)
- \(\operatorname{bar}(x, y)\)
- xlabel('time')
- ylabel()
- title()
- \(\operatorname{grid}()\)
plot \(x\) vs sample number plot x vs. y
\(\log (\mathrm{x})\) vs y
\(x\) vs \(\log (y)\) \(\log (\mathrm{x})\) vs \(\log (\mathrm{y})\)
\(3 d\) plot where the height is the value at \(x(a, b)\)
contour plot
draw a bar graph
label the \(x\) axis with the word 'time'
label the y axis
put a title on the plot
draw the grid lines

\section*{Useful Commands}
- hold on
- hold off
don't erase the current graph
do erase the current graph
- diary
- linepace(a, b, n)
- logspace(a,b,n)
- subplot()
- disp('hello') display the message hello create several plots on the same screen

\section*{Utilities}
- format
- zeros(n,m)
- eye(n,m)
- ones(n,m)
- help
- pause(x)
- clock
- etime
- tic
- toc
create a text file to save whatever goes to the screen create a \(1 x n\) array starting at \(a\), increment by \(b\)
create a 1 xn array starting at \(10^{\wedge}\) a going to \(10^{\wedge} \mathrm{b}\), spaced logarithmically
set the display format
create an nxm matrix of zeros
create an nxm matrix with ones on the diagonal create an nxm matrix of ones
help using different functions
pause x seconds (can be a fraction). Show the graph as well
the present time
the difference between two times
start a stopwatch
the number of seconds since tic```

