Math 103: Algebra I

ECE 111 Introduction to ECE

Jake Glower - Week \#2

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Objectives

- Scripts in Matlab
- Functions in Matlab
- Plotting in Matlab
- Solving $\mathrm{f}(\mathrm{x})=0$

In this lecture, we will be covering

- Rules of Algebra: valid ways to manipulate mathematical equations
- Plotting mathematical relationships,
- Solving a mathematical equation using graphical techniques, and
- Solving a mathematical equation using numerical techniques.

Algebra

Algebra I focuses on solving one equation for one unknown.
Example: Thermistor (resistor which changes with temperature)

- $R=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega$
- Given T, find R
- Given R, find T

Example: Photoresistor (resistor which changes with light)

- $R=1000 \cdot(l u x)^{-0.6}$
- Given lux, find R
- Given R, find lux

Graphical Solution

- Plot the function
- Find the solution from the graph

Example: Assume

$$
R=1000 \cdot \exp \left(\frac{3905}{T+293}-\frac{3905}{298}\right) \Omega
$$

Find T assuming $\mathrm{R}=1500$ Ohms.

Matlab Solution: $T=16 \mathrm{C}$

```
T = [0:0.01:40]';
R=1000*exp(3905./(T+273)-3905/298);
plot(T,R);
xlabel('Temperature (C)');
ylabel('Resistance (Ohms)');
grid
```


Problem: How do get more accuracy?

Option 1: Algebra

- Apply rules of algebra to determine T as a function of R

Option 2: Numerical Methods

- Iterate using Matlab

Rules of Algebra

Consider

$$
A=B
$$

Equals is a very powerful symbol

- It means the two sides are identical and interchangeable.
- Whatever you do on one side, do the same on the other to maintain balance

Legal Operations:

Addition:

- You can add or subtract the same value from both sides.
- Example

$$
A+5=B+5
$$

Multiplication:

- You can multiply or divide both sides by the same number
- (except zero)

$$
(A+5) \cdot 7=(B+5) \cdot 7
$$

Distribution:

- When multiplying stuff within parenthesis, you have to multiply each element

$$
(A+5) \cdot 7=A \cdot 7+5 \cdot 7
$$

Commutative Property:

- The order of addition and multiplication doesn't matter

$$
\begin{aligned}
& A+B=B+A \\
& A \cdot B=B \cdot A
\end{aligned}
$$

Some other useful properties relate to $\ln ()$ and $\exp ()$

$$
\begin{aligned}
& \exp (x) \equiv e^{x} \\
& \exp (\ln (x))=x \\
& \ln (\exp (x))=x
\end{aligned}
$$

Multiplying by one:

- You can multiply one side of the equation by one and still have a valid equation
$A \cdot 1=A$
$A \cdot\left(\frac{B}{B}\right)=A$

Adding Zero: You can add zero to one side and still have a valid equation

$$
\begin{aligned}
& A+0=A \\
& A+(B-B)=A
\end{aligned}
$$

Invalid Operations

Multiplying by Zero:

- This is a no-no
- Multiplying by zero makes anything work.

$$
5 \cdot 0=3 \cdot 0
$$

Dividing by zero:

- This is also a no-no:
- It also makes anything work

$$
\frac{A}{0}=\frac{B}{0}=\text { undefined (or infinity) }
$$

Algebra Example

Determine the value of X:

$$
\left(\frac{4(x+6)-7(2 x+3)}{15+2 x}\right)=25
$$

Multiply both sides by $(15+2 x)$ to clear the fraction

- you can multiply both sides of an equation by the same value

$$
\begin{aligned}
& \left(\frac{4(x+6)-7(2 x+3)}{15+2 x}\right)(15+2 x)=25(15+2 x) \\
& 4(x+6)-7(2 x+3)=25(15+2 x)
\end{aligned}
$$

Multiply out each term (distributive property)

$$
(4 x+24)-(14 x+21)=(375+50 x)
$$

Group terms and simplify

$$
-10 x+3=375+50 x
$$

Add $10 x$ to each side

$$
\begin{aligned}
& (-10 x+3)+(10 x)=(375+50 x)+(10 x) \\
& 3=375+60 x
\end{aligned}
$$

Subtract 375 from each side

$$
\begin{aligned}
& 3-375=375+60 x-375 \\
& -372=60 x
\end{aligned}
$$

Divide both sides by 60

$$
\frac{-372}{60}=\frac{60 x}{60}=x
$$

Sidelight: Proof that $\mathbf{2 = 1}$

Using these rules, you can prove that $2=1$. Assume

$$
a=b=1
$$

Multiply both sides by a:

$$
a \cdot a=a b
$$

Subtract b^{2} from both sides:

$$
a^{2}-b^{2}=a b-b^{2}
$$

note:

$$
(a+b)(a-b)=a^{2}+a b-a b-b^{2}=a^{2}-b^{2}
$$

Rewrite the left and right sides as

$$
(a+b)(a-b)=b(a-b)
$$

Divide both sides by (a-b)

$$
\begin{aligned}
& \frac{(a+b)(a-b)}{(a-b)}=\frac{b(a-b)}{(a-b)} \\
& a+b=b
\end{aligned}
$$

$$
\Rightarrow 1+1=2=1
$$

Why this proof is not valid...

The problem with this proof is line 5:
$(a+b)(a-b)=b(a-b)$
$2 \cdot 0=1 \cdot 0$

While this is valid, canceling the zeros is not valid: you can't divide by zero $2 \neq 1$

Application of Algebra

Going back to the original problem, find T as a function of R

$$
R=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right)
$$

Solution: Apply rules of algebra.

Divide both sides by 1000

$$
\frac{R}{1000}=\exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right)
$$

Take the natural log of both sides

$$
\ln \left(\frac{R}{1000}\right)=\frac{3905}{T+273}-\frac{3905}{298}
$$

Add 3905/298 to both sides

$$
\ln \left(\frac{R}{1000}\right)+\frac{3905}{298}=\frac{3905}{T+273}
$$

Take the inverse of both sides

$$
\left(\frac{1}{\ln \left(\frac{R}{1000}\right)+\frac{3905}{298}}\right)=\frac{T+273}{3905}
$$

Multiply both sides by 3905

$$
\left(\frac{3905}{\ln \left(\frac{R}{1000}\right)+\frac{3905}{298}}\right)=T+273
$$

Subtract 273 from both sides

$$
T=\left(\frac{3905}{\ln \left(\frac{R}{1000}\right)+\frac{3905}{298}}\right)-273
$$

```
) MATLAB 7.12.0 (R2011a)
File Edit Debug Desktop Window Help
```



```
    Shortcuts \ How to Add W What's New
    >> = 1500;
    >> den = log(R/1000) + 3905/298;
    >> num = 3905;
    >> T = num / den - 273
    T =
```

 16.0 .560
 $f x \gg$

Note:

- This is a lengthy process (which you'll need to do on midterms)
- Sometimes, algebra doesn't work very well...

Example: Assume (x, y) satisfy the following equations

$$
\begin{aligned}
& y=\left(\frac{\cos (3 x)}{x^{2}+1}\right) \\
& y=0.1 \cdot \exp \left(\frac{x}{2}\right)
\end{aligned}
$$

Find all solutions.

Algebra doesn't work very well. Substitute for y

$$
\left(\frac{\cos (3 x)}{x^{2}+1}\right)=0.1 \cdot \exp \left(\frac{x}{2}\right)
$$

Not sure what to do now...

Graphical methods still work:

```
>> x = [-4:0.04:4]';
>> y1 = cos(3*x) ./ (x.^2 + 1);
>> y2 = 0.1*exp(x/2);
>> plot(x,y1,x,y2)
```

There are five solutions

- Graphical methods get you close
- Numeric methods to solve $\mathrm{f}(\mathrm{x})=0$ find these more precisely

Solving $f(x)=0$ Using Numerical Techniques

- Matlab Scripts
- Matlab Functions

Scripts and functions are slightly different in Matlab:

- Scripts are similar to instructions you type in the command window. When you run a script, Matlab acts like you just typed everything in the script into the command window.
- Functions, in contrast, are subroutines you can call. For example, plot() is a function.
Unlike scripts, you cannot execute a function. Instead, it has to be called by someone else.

Functions in Matlab

Let's write a function called Therm which

- Is passed the temperature, and
- Returns the resistance of thermistor with the R-T relationship of

$$
R=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right)
$$

Initially, in Matlab if you try to call this function from the command window, you'll get an error message


```
File Edit Debug Desktop Window Help
```



```
    Shortcuts त How to Add त What's New
    >> Therm(15)
    ?2? Undefined function or method "Therm"
    for input arguments of type "double".
fx >> |
```

What Matlab is doing when you type in Therm(15) is

- If first checks if there is a varable called Therm. If so, it returns the 15th element of that array.
- If no variable Therm exists, it then checks if there is a file called Therm.m If Matlab finds that file, it then tries to call it.
- If that fails, then an error message is given: Matlab can't find Therm and doesn't know what to do.

Create a file Therm.m

- File - New Function
- Type in the following:

Now save this in the default directory with the default name, Therm.m

The keyword function tells Matlab that this is a subroutine: you cannot run it but you can call it from the command window.

Now, you can call Therm.

- To find the resistance at 0 C :
>> Therm(0)
$\mathrm{ans}=3.3201 \mathrm{e}+003$
- To find the resistance at 30C:
>> Therm(30)
ans $=805.5435$

7 MATLAB 7.12.0 (R2011a)
File Edit Debug Desktop Window Help

Shortcuts How to Add What's New
\gg Therm (0)
ans $=$
$3.3201 e+003$
\gg Therm (30)
ans $=$
805.5435

Solving $f(x)=0$

Change the function so that the result is zero at the correct temperature

- The temperature that results in $\mathrm{R}=1500$ Ohms

```
function [e] = Therm(T)
R = 1000*exp(3905/(T+273)-3905/298);
e = R - 1500;
end
```

Guess T until $\mathrm{e}=0$

- $f(x)=0$

Better methods exist for finding T :
502.8271
>> Therm(15)
ans $=$
76.1749
>> Therm(20)
ans $=$
-249.4065
>> Therm(16)
ans $=$
3.9333
$f_{x} \gg \mid$

Interval Halving: Start with two guesses

- Guess \#1 has a positive result (0C)
- Guess \#2 has a negative result (30C)

The next guess is the midpoint between the two (+15 C)

- If this result is positive, replace guess \#1
- If the result is negative, replace guess \#2

Repeat

Interval Halving in Action

- Iterates fifteen times
- Result: T = 16.0556

Matlab Script

```
X1 = 0;
X2 = 30;
for n=1:15
    X3 = (X1+X2)/2;
    Y3 = Therm(X3);
    if(Y3 > 0)
        X1 = X3;
    else
        X2 = X3;
    end
    disp([n X3, Y3]);
end
```

Result in the Command Window		
n	T	e
1	15.0000	76.1749
2	22.5000	-382.7580
3	18.7500	-175.9167
4	16.8750	-56.1733
5	15.9375	8.3354
6	16.4063	-24.3236
7	16.1719	-8.0967
8	16.0547	0.0935
9	16.1133	-4.0080
10	16.0840	-1.9588
11	16.0693	-0.9331
12	16.0620	-0.4199
13	16.0583	-0.1632
14	16.0565	-0.0348
15	16.0556	0.0294

California Method:

- Start with two guesses (one high, one low).
- Interpolate for the next guess (rather than the midpoint)

$$
X_{3}=X_{1}+\left(\frac{\delta X}{\delta \text { error }}\right) E_{1}
$$

California Method in Action

- note: California method converges much faster

```
Matlab Script
X1 = 0;
Y1 = Therm(X1);
X2 = 30;
Y2 = Therm(X2);
for n=1:10
    X3 = X2-(X2-X1)/(Y2-Y1)*Y2;
    Y3 = Therm(X3);
    if(Y3 > 0)
        X1 = X3;
        Y1 = Y3;
    else
        X2 = X3;
        Y2 = Y3;
    end
    disp([n, X3, Y3]);
end
```

Result in the Command Window

n	T	e
1	21.7148	-342.7238
2	18.2739	-146.6308
3	16.9115	-58.6213
4	16.3838	-22.7808
5	16.1813	-8.7541
6	16.1039	-3.3494
7	16.0743	-1.2794
8	16.0630	-0.4884
9	16.0587	-0.1864
10	16.0570	-0.0711
11	16.0564	-0.0271
12	16.0562	-0.0104
13	16.0561	-0.0040
14	16.0560	-0.0015
15	16.0560	-0.0006

Newton's Method:

- Take a guess.
- Take another guess slightly larger.
- Interpolate to find the zero crossing
$X_{2}=X_{1}-\left(\frac{\delta X}{\partial e}\right) e_{1}$

Newton's Method in Action

- Newton's method converges very fast
- Any method with the name Gauss or Newton is probably a good method

Matlab Script

```
X3 = 0;
for n=1:10
    X1 = X3;
    Y1 = Therm(X1);
    X2 = X1 + 0.01;
    Y2 = Therm(X2);
    X3 = X2 - (X2-X1)/(Y2-Y1)*Y2;
    disp([n, X1, Y1]);
    X1 = X3;
    end
```

Result in the Command Window

n	T	e
1	0.0000	1651.2
2	11.0772	400.7303
3	15.4353	44.2472
4	16.0459	0.7072
5	16.0560	0.0000
6	16.0560	-0.0000
7	16.0560	-0.0000
8	16.0560	-0.0000
9	16.0560	-0.0000

More Fun with Newton's Method

Assume

$$
\begin{aligned}
& R=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega \\
& V=\left(\frac{R}{R+1000}\right) \cdot 10 \mathrm{~V}
\end{aligned}
$$

Find the temperature when

- $\mathrm{V}=8 \mathrm{~V}$
- V $=7 \mathrm{~V}$
- $\mathrm{V}=6 \mathrm{~V}$

Solution using Newton's Method: Create a Matlab function which

- Is passed your guess at the temperature, T , and
- Returns the error in the voltage

Matlab Function

- Change V0 for each solution (8V, 7V, 6V)

```
function [e] = Voltage(T)
    V0 = 8.0; % target voltage
    R = 1000 * exp( 3905/(T+273) - 3905/298 );
    V = R / (1000 + R) * 10;
    e = V - V0;
    end
```

Use Newton's method to solve
Matlab Script (Newton's Method)

```
X3 = 0; % initial guess
for n=1:10
    X1 = X3;
    Y1 = Voltage(X1);
    X2 = X1 + 0.01;
    Y2 = Voltage(X2);
    X3=X2-(X2-X1)/(Y2-Y1)*Y2;
    disp([n, X1, Y1]);
    X1 = X3;
end
```

Result (V0 = 8, 7, 6)

n	T	error
1.0000	0	-0.3147
2.0000	-3.3764	-0.0115
3.0000	-3.5095	-0.0000
4.0000	-3.5098	-0.0000
5.0000	-3.5098	-0.0000

n	error	
1.0000	0	0.6853
2.0000	7.3510	-0.0472
3.0000	6.9030	-0.0001
4.0000	6.9017	-0.0000
5.0000	6.9017	-0.0000

n	T	error
1.0000	0	1.6853
2.0000	18.0785	-0.2272
3.0000	16.0580	-0.0002
4.0000	16.0560	-0.0000
5.0000	16.0560	-0.0000

Newton's Method with Multiple Solutions

Your initial guess usually determines which solution it converges to

- It helps to know the answer to find the answer

Example: Find all solutions to

$$
\begin{aligned}
& y=\frac{\cos (3 x)}{x^{2}+1} \\
& y=0.1 \exp \left(\frac{x}{2}\right)
\end{aligned}
$$

Method \#1: Graphical Methods: Treat these as two separate functions and plot them together

$$
y_{1}=\frac{\cos (3 x)}{x^{2}+1} \quad y_{2}=0.1 \exp \left(\frac{x}{2}\right)
$$

The intersections are the solutions (there are five solutions)

```
>> x = [-4:0.04:4]';
>> y1 = cos(3*x) ./ (x.^2 + 1);
>> y2 = 0.1*exp(x/2);
>> plot(x,y1,x,y2)
```


Method \#2: Newton's Method.

- Create a Matlab function that returns the error: y1-y2:

```
function [e] = Example3(x)
    y1 = cos(3*x) / (x^2 + 1);
    y2 = 0.1*exp(x/2);
    e = y1 - y2;
end
```

Use Newton's method to solve.

- The initial guess pretty much determines which solution you converge to:

Matlab Script (Newton's Method)

```
x3 = -3.6;
```

x3 = -3.6;
for n=1:10
for n=1:10
X1 = X3;
X1 = X3;
Y1 = Example3(X1);
Y1 = Example3(X1);
X2 = X1 + 0.01;
X2 = X1 + 0.01;
Y2 = Example3(X2);
Y2 = Example3(X2);
X3=X2-(X2-X1)/(Y2-Y1)*Y2;
X3=X2-(X2-X1)/(Y2-Y1)*Y2;
disp([n, X1, Y1]);
disp([n, X1, Y1]);
X1 = X3;
X1 = X3;
end

```
end
```

Result (Matlab command window)

n	x	$y 1-y 2$
1	-3.6000	-0.0305
2	-3.7343	-0.0017
3	-3.7428	-0.0000
4	-3.7429	-0.0000
5	-3.7429	-0.0000
n	-2.4000	0.0599
1	-2.5498	-0.0009
2	-2.5476	-0.0000
3	-2.547	
4	-2.5476	-0.0000
5	-2.5476	-0.0000
n	x	$y 1-y 2$
1	-1.6000	-0.0204
2	-1.6240	-0.0007
3	-1.6249	-0.0000
4	-1.6249	-0.0000
5	-1.6249	-0.0000

Result:

The five solutions are $\mathrm{x}=\{-3.7429,-2.5476,-1.6249,-0.4912,0.4718\}$

Summary:

Algebra is useful when you want to solve a mathematical equation.
You can also solve mathematical equations in Matlab using

- Graphical techniques, and
- Numeric techniques.

Methods with the name of Gauss or Newton tend to be really good methods.

