Math 129: Linear Algebra ECE 111 Introduction to ECE
 Jake Glower - Week \#4

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Introduction

Algebra: Solve one equation for one unknown

$$
2(x+3)+5 x=10 x+20
$$

Example: Determine R1 as a function of $\{\mathrm{V} 0, \mathrm{~V} 1, \mathrm{R} 2\}$ given

$$
V_{1}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) V_{0}
$$

Solution

$$
\begin{aligned}
& \left(R_{1}+R_{2}\right) V_{1}=R_{1} V_{0} \\
& R_{2} V_{1}=R_{1}\left(V_{0}-V_{1}\right) \\
& R_{1}=\left(\frac{V_{1}}{V_{0}-V_{1}}\right) R_{2}
\end{aligned}
$$

this is how an ohm meter works

Algebra: Solving 2 equations for 2 unknowns

$$
\begin{aligned}
& 2 x+3 y=10 \\
& 5 x-7 y=20
\end{aligned}
$$

Step 1: Solve for x :

$$
x=\left(\frac{10-3 y}{2}\right)
$$

Substitute

$$
5\left(\frac{10-3 y}{2}\right)-7 y=20
$$

You now have one equation for one unknown

Algebra: Solving 3 equations for 3 unknowns

$$
\begin{aligned}
& 2 x+3 y+4 z=10 \\
& 5 x-7 y+2 z=5 \\
& x+y+z=2
\end{aligned}
$$

Step 1: Solve for x

$$
x=\left(\frac{10-3 y-4 z}{2}\right)
$$

Substitute

$$
\begin{aligned}
& 5\left(\frac{10-3 y-4 z}{2}\right)-7 y+2 z=5 \\
& \left(\frac{10-3 y-4 z}{2}\right)+y+z=2
\end{aligned}
$$

You now have 2 equations and 2 unknowns

- Algebra works, but gets really unwieldy past 2 equations and 2 uknowns
- We need a better tool

Linear Algebra:

- Solve N equations for N unknowns
- Solution uses matrices
- Matlab excels at this type of problem

Example: Solve for $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$3 a+4 b+5 c=10$
$5 a+6 b-c=20$
$a+b+c=2$.

Matrix Definition and Properties.

Dimension: rows x columns

- Example: A is a 2×3 matrix

$$
\begin{gathered}
A=[1,2,3 ; 4,5,6] \\
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}
\end{gathered}
$$

Matrix Addition:

- Add each element
- Dimensions must match

Multiplication：

－Inner dimension must match
－$C_{2 x 1}=A_{2 \times 3} B_{3 x 1}$

Element i, j of matrix C is computed as
$c_{i j}=\sum_{k} a_{i k} b_{k j}$

Note that matrix multiplication is not commutative：

```
    AB\not=BA
    C = B*A
??? Error using ==> mtimes
Inner matrix dimensions must agree.
```

```
MATLAB 7.12.0 (R2011a)
    \square口
File Edit Debug Desktop Window Help

```

Shortcuts [^ How to Add \त What's New
>A=[1,2,3 ; 4,5,6]
A =
1 2 3
>> B = [7;8;9]
B =
7
8
9
>C = A*B
C=
5 0
122
fx
4 Start

```

\section*{Zero Matrix:}
- A zero matrix is a matrix of all zeros.
- The zero matrix behaves like the number zero:
- \(\mathrm{A}+0=\mathrm{A}\)
- \(\mathrm{A} * 0=0\)

\section*{Identity Matrix:}
- NxN matrix
- Diagonal is one
- All other elements are zero
- The identity matrix behaves like the number one:
- \(\mathrm{A} * \mathrm{I}=\mathrm{A}\)


Matrix Inverse: B is the inverse of A if \(\mathrm{AB}=\mathrm{I}\)

\section*{Solving \(\mathbf{N}\) equations for \(\mathbf{N}\) unknowns}

Express in matrix form
\[
Y_{N x 1}=B_{N x N} A_{N x 1}
\]
where
- A is a matrix of your N unknowns
- B is a basis function and
- Y the result for these N equations

The solution is then
\[
A=B^{-1} Y
\]

Example：Solve the following set of 3 equations for 3 unknowns：
\[
\begin{aligned}
& 3 a+4 b+5 c=10 \\
& 5 a+6 b-c=20 \\
& a+b+c=2
\end{aligned}
\]

Step 1：Group terms and write in matrix form：
\[
\left[\begin{array}{ccc}
3 & 4 & 5 \\
5 & 6 & -1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
10 \\
20 \\
2
\end{array}\right]
\]

Step 2：Invert and solve
\[
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{ccc}
3 & 4 & 5 \\
5 & 6 & -1 \\
1 & 1 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
10 \\
20 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2.7500 \\
5.5000 \\
0.7500
\end{array}\right]
\]
```

IMATAB 7.12.0 (R2011a)
\square口
File Edit Debug Desktop Window Help

```

```

\ Shortcuts
⿱一兀口
>> B = [3,4,5; 5,6,-1; 1,1,1]
B =

3	4	5
5	6	-1
1	1	1

 >> Y = [10;20;2]
 Y =
 10
 20
 2
 >> A = inv(B)*Y
 A =
 -2.7500
 5.5000
 fx -0.7500

```

\section*{Example \#1}

Over the range of \((0,1.5)\), approximate
\[
y=\sin (x) \approx a x+b
\]

Solution: With 2 unknowns, we need 2 equations.
- Pick the endpoints

Place in matrix form
\[
\begin{aligned}
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]} \\
& Y=B A \\
& A=B^{-1} A
\end{aligned}
\]

Result:
\[
\sin (x) \approx 0.6650 x+0
\]
\(\gg x=[0 ; 1.5]\)
0
1.5000
\(\gg Y=\sin (x)\)
0
0.9975
\(\gg B=\left[x, x^{*} 0+1\right]\)
\(1.0 \quad 1.0000\)
\(1.5000 \quad 1.0000\)
\(\gg A=\operatorname{inv}(B) * Y\)
0.6650

Note: This solution defines a line that passes through ( \(\mathrm{x} 1, \mathrm{y} 1\) ) and ( \(\mathrm{x} 2, \mathrm{y} 2\) ) (the endpoints)
```

>> x = [0:0.01:1.5]';
>> y = sin(x);
>> B = [x, x*0+1];
>> plot(x,y,'b',x,B*A,'r')

```


\section*{Example 2:}

Approximate \(\sin (x)\) with a parabola
\[
y=\sin (x) \approx a x^{2}+b x+c
\]

\section*{Solution:}
- There are three unknowns
- Create 3 equations for 3 unknowns
- Pick 3 points (x1, x2, x3)
\[
\begin{aligned}
& {\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]} \\
& Y=B A \\
& A=B^{-1} Y
\end{aligned}
\]
result:
\[
\sin (x) \approx-0.3251 x^{2}+1.1527 x+0
\]
\(\gg \mathrm{x}=[0 ; 0.75 ; 1.5] ;\)
\(\gg B=\left[x . \wedge 2, x, x^{\star} 0+1\right] ;\)
\(\gg Y=\sin (X)\)

Y =
0.6816
0.9975
\(\gg A=\operatorname{inv}(B) * Y\)
\(\mathrm{A}=\)
\(-0.3251\)
1.1527

0
\(f x \gg \mid\)

Note: This solution defines a parabola that passes through
- (x1, y1),
- (x2, y2),
- (x3, y3)
```

>> x = [0:0.01:1.5]';
>> y = sin(x);
>> B = [x.^2, x, x.^0];
>> plot(x,Y,'b',x,B*A,'r')

```


\section*{What happens if you have more equations than unknowns?}

Previous solution ignores data outside of points chosen
- 2 points for \(\mathrm{y}=\mathrm{ax}+\mathrm{b}\)
- 3 points for \(y=a x 2+b x+x\)

How do you include all of the data in the calculations?

What is the "best" approximation?


\section*{Least Squares Solution}

Define "best" to be the curve that minimizes the sum squared difference
- a.k.a. least squares

Solution: Assume you have N equations for M unknowns
\[
Y_{n x 1}=B_{n x m} \cdot A_{m x 1}
\]

B is not invertable, so multiply on the left by BT
\[
B_{m x n}^{T} \cdot Y_{n x 1}=B_{m x n}^{T} \cdot B_{n x m} \cdot A_{m x 1}
\]

Multiply on the left by \(\left(B^{T} B\right)^{-1}\)
\[
\left(B^{T} B\right)^{-1} B^{T} Y=A
\]

This is the least-squares curve fit

\section*{Example 3:}

Use seven points to approximate
\[
y=\sin (x) \approx a x+b
\]

Define the basis matrix, B , to be
\[
B=\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots
\end{array}\right]
\]

This results in
\[
\sin (x) \approx 0.6796 x+0.0897
\]

This line minimizes the sum squrared difference between
- your data and
- the curve fit (the line)
```

>> x0 = [0:0.01:1.5]';
>> B = [x0, x0.^0]
>> plot(x,y,'r+',x0,B*A,'b')

```


\section*{Example 4:}

Use seven points to approximate
\[
y=\sin (x) \approx a x^{2}+b x+c
\]

Define the basis matrix, B , to be
\[
B=\left[\begin{array}{ccc}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
\vdots & \vdots & \vdots
\end{array}\right]
\]

This results in
\[
\sin (x) \approx-0.3241 x^{2}+1.1659 x-0.0116
\]
```

d MATLAB 7.12.0 (R2011a)
File Edit Debug Desktop Window Help
\#1)
Shortcuts How to Add What's New
>> x = [0:0.25:1.5]';
>> y = sin(x);
>> B = [x.^2, x, x.^0]
B =

0	0	1.0000
0.0625	0.2500	1.0000
0.2500	0.5000	1.0000
0.5625	0.7500	1.0000
1.0000	1.0000	1.0000
1.5625	1.2500	1.0000
2.2500	1.5000	1.0000

 >> A = inv(B'*B)*B'*Y
 A =
 -0.3241
 1.1659
 -0.0116
 fx >> |

```

This line minimizes the sum squrared difference between
- your data and
- the curve fit (the line)
```

>> x0 = [0:0.01:1.5]';
>> B = [x0.^2, x0, x0.^0]
>> plot(x,y,'r+',x0,B*A,'b')

```


\section*{Fun with Curve Fitting}

With least squares, you can curve fit anything
- including real data

Let's curve fit
- Artic sea ice cover
- Fargo's temperature
- Global CO2 levels
- Global temperatures
and see what the data tells us....

\section*{Arctic Ice Levels}
- National Sea and Ice Data Center
- http://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph/ The area covered by sea ice in the Arctic has been measured by the National Sea and Ice Data Center since 1979.
- Record the minimum ice level each year
- Find a linear curve fit for this data
- Determine when the Arcic will be ice free

41 data points
- 41 equations

2 unknowns
- \(y=a x+b\)

\section*{Least Squares Solution}

Step 1: Paste the data into Matlab
```

DATA = [<paste >];
year = DATA(:,1);
ice = DATA(:,2);

```

Solve using least squares
```

B = [year, year.^0];
Y = [ice];
A = inv(B'*B)*B'*Y
- 0.0844726
174.68702
Area }\approx-0.0844\cdot\mathrm{ year }+174.6
plot(y,a,'b.-',y,X*A,'r')

```


\section*{Data Analysis}

When will the Arctic be ice free?
- First time in 5 million years
- Find the zero crossing
\[
\begin{aligned}
& \text { Area } \approx 0=-0.0844 \cdot \text { year }+174.68 \\
& \text { year }=\left(\frac{174.68}{0.0844}\right)=2067.97
\end{aligned}
\]
roots() also works
```

roots(A)
2067.9729

```

Using a linear curve fit, the data predicts that the Arctic will be ice free for the first time in 5 million years in the year 2067.


\section*{Fargo Temperatures}

Source: Hector Airport
- Mean Temperature in April
- Is there a trend?

Express this in the form of
\[
F=a y+b
\]
where
- \(F\) is the mean temperature and
- y is the year.


In Matlab:
```

DATA = [
control V (paste the data)
];
y = DATA (:,1);
F = DATA(:,8);
plot(y,F,'.-')
B = [y, y.^0];
A = inv(('*B)* *'*F
0.0297
-15.7381
plot(y,F,'.-',y,B*A,'r')

```

\section*{Meaning}
- Fargo is warming 0.0297F per year
- +2.37F over 80 years

Degrees F


\section*{Atmospheric CO2 Levels}
- Source: NOAA Mauna Loa Observatory
- https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html
- Measured since 1959

Determine a parabolic curve fit Estimate when CO2 levels will reach 2000ppm
- Same as what triggered the Permian extinction
- 251 million years ago
- Nearly wiped out all life

\section*{Least Squares Curve Fit}

Use a parabolic curve fit:
```

 CO2 = ay 2}+by+
 DATA = [
paste in the data you just copied
];
Y = DATA(:, 1);
CO2 = DATA(:,2);
B = [Y.^2, Y, Y.^0];
A = inv(B'*B)* B'*CO2
1.3072e-002
-5.0428e+001
4.8937e+004
plot(y,CO2,'b.-' , Y, B*A,'r')
xlabel('Year');
ylabel('CO2 ppm');

```


\section*{Data Analysis}

When will CO2 levels reach 2000 ppm ?
\[
a y^{2}+b y+c=2000
\]

Rewrite as
\[
\begin{aligned}
& a y^{2}+b y+c-2000=0 \\
& \operatorname{roots}\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]-\left[\begin{array}{c}
0 \\
0 \\
2000
\end{array}\right]\right)
\end{aligned}
\]
\[
\operatorname{roots}(A-[0 ; 0 ; 2000])
\]
2291.9
1564.3

If nothing changes, we should hit 2000ppm of CO2 in the year 2291.


\section*{Global Temperatures}
- National Oceanic and Atmosperic Administration
- https://www.ncdc.noaa.gov/cag/global/time-series/globe/land_ocean/p12/12/1880-2022.csv


\section*{Global Temperatures (cont'd)}

Parabolic curve fit for 1970 .. 2022
```

DATA = [<paste data 1970..2022>];
year = DATA(:,1);
dT = DATA(:,2);
B = [year.^2, year, year.^0];
A = inv(B'*B)*B'*dT
3.5840e-005
-1.2545e-001
1.0805e+002
plot(year,dT,'b',year,B*A,'r');

```


\section*{Global dT: Data Analysis}

When will we reach +10 degrees C ?
- The same temperature that triggered the Permian extinction
```

>> roots(A - [0;0;10])

```
2322.0
1178.2

If nothing changes, we'll reach +10 degrees C in the year 2322

Is this a problem? In 300 years or less...
- The Arctic will be ice free
- CO2 levels will reach 2000ppm
- Global temperatures will reach +10 C


\section*{The Permian Extinction}
www.Wikipedia.com
Earth has suffered five mass extinction events
- Ordovician-Silurian: 450-440 MYA
- Late Devonian: 375-360 MYA.
- Permian-Triassic: 252 MYA
- Triassic-Jurassic: 201.3 MYA
- Cretaceous-Paleogene: 65MYA

The End-Permian was the largest

- \(57 \%\) of all families
- \(83 \%\) of all genera and
- \(90 \%\) to \(96 \%\) of all species

\section*{What Caused the Permian Extinction?}

When Life Nearly Died: The Greatest Mass Extinction of All Time, 2005, by Michael Benton

\section*{Step 1: Siberian Trapps}
- Massive volcanic erruption
- Lava flow stretches from the Urals to China
- Released huge amounts of CO 2 and SO 2
- Acid rain spurrs the first wave of extinctions


\section*{2nd wave}
http://i.pinimg.com/736x/db/cb/93/dbcb937238a3c405f7a7f865c1886bf4.jpg
Lava covers coal fields
- Sets the coal on fire
- Raises CO2 levels to 2000ppm


\section*{3rd Wave:}
https://geneticliteracyproject.org/wp-content/uploads/2018/10/fire-10-22-18.jpg
- CO 2 raises temperatuers by 10 degrees C
- Triggers another wave of extinctions


\section*{4th Wave:}
https://www.reef2reef.com/attachments/20160408_211257-1-jpg.352526/
- Warmer temperatures melt the ice caps
- Ocean currents stop
- Without ocean circulation, oxygen levels plummet
- Cyano-bacteria flourish in the oceans
- The air beomes poisoned with cyanide


\section*{5th Wave}
- Methane hydrates become unstable
- Temperatures rise another 10 degrees C
- 20 degrees C total
- The ocean becomes 130 F at the equator
https://i0.wp.com/www.apextribune.com/wp-content/uploads/2014/12/seafloor-methane-rele ased-into-the-pacific-ocean-1024×576.jpg


\section*{Net Result}
http://english.nigpas.cas.cn/rh/rp/201112/W020111212526403740930.jpg
Life was almost wiped out
- \(57 \%\) of all families
- \(83 \%\) of all genera and
- \(90 \%\) to \(96 \%\) of all species

It took almost 10 million years for life to return
- All triggered by +10 C temperature rise
- 2000ppm CO2 levels

Is this a repeatable experiment?
- We're going to find out...


\section*{Summary:}

With matricies, you can solve N equations for N unknowns
\[
A=B^{-1} Y
\]
- If you can convert a problem to N equations with N unknowns, you can solve
- Very common technique in ECE

If you have more equations than unknowns, you can solve using least-squares \(A=\left(B^{T} B\right)^{-1} B^{T} Y\)
- Useful when analyzing actual data (lab results)
- Allows you to see trends in the noise```

