Math 165: Calculus I Differentiation

ECE 111 Introduction to ECE

Jake Glower - Week \#6

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Differentiation

The derivative of a function gives you the slope.
This has several uses.

- Can be used to find what's happening at a given time
- Can be used to find the maximum \& minimum of a function

Example: Bank Account

The derivative is the slope: this tells you what is happening with your bank account:
$0<x<2$: The slope is zero

- Nothing is being added or taken out
$2<x<4$: The slope is positive
- Money is being added to your account
$5<x<6$: Negative slope
- Money is being withdrawn

Furthermore, the derivative also tells you how much money you're depositing or withdrawing.

Calculating the Derivative

Determine the slope:

$$
\text { slope }=y^{\prime}(x)=\frac{d y}{d x}=\frac{\text { change in } \mathrm{y}}{\text { change in } \mathrm{x}}
$$

$0<x<2$

- $d y=0, \quad d x=2, \quad d y / d x=0$
$2<x<4$
- dy $=20, d x=2, d y / d x=10$
$7<x<9$
- $d y=+30, d x=2, d y / d x=15$

Example: Global CO2 Levels

- 2015-2023

Graph shows global CO2 levels
Derivative shows amount of CO2 added

- Positive Slope: CO2 is being added
- Negative Slope: CO2 is bring removed

What's Happening?

Derivatives are useful

- They provide information about what's happening on a month-by-month basis.
Most land is in the northern hemisphere
Summer (July)
- Global CO2 levels drop.
- Trees green up and absorb CO2

Winter (January)

- Global CO2 levels drop
- Trees drop their leaves
- Leaves decay, releasing CO2

Also shows a hiccup in March

- Not sure why...
y': ppm/year

Topics for This Lecture

How to find a derivative

- Using lookup tables similar to what you'll do in Math 165,
- Using graphical methods, and
- Using numerical methods (i.e. Matlab).

Evaluate different paths for a robotic arm

- 1 st derivative of angle = velocity
- Velocity = voltage for a DC motor
- 2nd derivative of angle $=$ acceleration
- Acceleration = current for a DC motor

Different paths result in different implied voltages and currents

Differentiation: Method \#1

Memorize and apply a set of rules.

- What you do in Calculus I

Power Functions:

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{n}\right)=n \cdot x^{n-1} \\
& \frac{d}{d x}\left(e^{a x}\right)=a \cdot e^{a x} \\
& \frac{d}{d x}(\sin (a x))=a \cdot \cos (a x) \\
& \frac{d}{d x}(\cos (a x))=-a \cdot \sin (a x) \\
& \frac{d}{d x}(f(x) \cdot g(x))=\frac{d f(x)}{d x} \cdot g(x)+f(x) \cdot \frac{d g(x)}{d x} \\
& \frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot \frac{d f}{d x}-f(x) \cdot \frac{d g}{d x}}{(g(x))^{2}}
\end{aligned}
$$

With these rules, you can find

$$
y=\frac{d}{d x}\left(\frac{\cos (x)}{x^{2}+1}\right)
$$

Stay tuned until you take Calculus I to solve using this method.

Differentiation Method \#2: Graphical

- Draw the tangent at several points
- Determine the slope at each point
- Draw a curve connecting the slopes

Example: Find the derivative of $y=x^{2}$

Step 1: Draw the tangent at several points (shown in red)
Step 2: Determine the slope at each point (shown in purple)

Step 3: Connect the points (shown in purple)

Example \#2: Determine the derivative of a sine wave:

$$
y=\sin (x)
$$

Step 1: Plot y vs. x (shown below)
Step 2: Compute the slope at several points

Step 3: Plot the slopes and connect them with a smooth curve

The result (shown in red) is a cosine function

Graphical Example \#3:

- Works for any function

Example: $\quad y=\frac{d}{d x}\left(\frac{\cos (x)}{x^{2}+1}\right)$

Step 1: Compute the slope at several points

Step 2: Plot the derivatives and connect with a smooth curve

Differentiation Method \#3:

Numerical Differentiation.

Repeating, the derivative is

$$
\frac{d y}{d x} \equiv \frac{\text { the change in } \mathrm{y}}{\text { the change in } \mathrm{x}}
$$

You can approximate this as

$$
\left(\frac{d y}{d x}\right)_{x=4} \approx \frac{y(5)-y(3)}{x(5)-x(3)}
$$

Repeat a a bunch of points

$$
y^{\prime}(i) \approx \frac{y(i+1)-y(i-1)}{x(i+1)-x(i-1)}
$$

Note: Endpoints cause problems

- Can't go beyond the endpoints

Use a slightly different equation for the endpoints

$$
\begin{aligned}
& y(1) \approx \frac{y(2)-y(1)}{x(2)-x(1)} \\
& y^{\prime}(n) \approx \frac{y(n)-y(n-1)}{x(n)-x(n-1)}
\end{aligned}
$$

Differentiation in Matlab

Create a function

- A Matlab routine you can call
- Similar to $\cos (\mathrm{x})$ or $\exp (\mathrm{x})$

In Matlab, click on 'File New Function'

Creating A New Function in Matlab: File New Function

In the editor window, type in the following:

```
function [dy ] = derivative( \(x, y\) )
npt \(=\) length(x);
\(d y=0 * x ;\)
for \(i=2: n p t-1\)
        \(d y(i)=(y(i+1)-y(i-1)) /(x(i+1)-x(i-1)) ;\)
end
\(d y(1)=(y(2)-y(1)) /(x(2)-x(1)) ;\)
\(d y(n p t)=(y(n p t)-y(n p t-1)) /(x(n p t)-x(n p t-1)) ;\)
end
```

Save as 'deravitive.m'

Check your function

- Always a good idea
- Check against a known answer

From Math 165,

$$
\frac{d}{d x}(2 \sin (3 t))=6 \cos (3 t)
$$

Checking in Matlab:

```
>> x = [0:0.1:4]';
>> y = 2*sin(3*x);
>> dy = derivative(x,y);
>> plot(x,dy,'b.',x,6*}\operatorname{cos(3*x));
```

The two match up

- The derivative function seems to be working
- The endpoints are a little off (common problem)

Example 2:

- Numerical solutions work even if you don't know the answer

Find the derivative of

$$
y=e^{-x^{2}} \cdot \cos \left(x^{3}\right)
$$

First, input $y(x)$ into Matlab

```
>> x = [-4:0.04:4]';
>> y = exp(-x.^2) .* cos( x.^3);
>> plot(x,y)
```

Now find the derivative: $\mathrm{dy} / \mathrm{dx}$

```
>> dy = derivative(x,y);
>> plot(x,y,'b',x,dy,'r')
```


Finding local maximums \& minimums

$\mathrm{y}(\mathrm{x})$ is a max/min when $\mathrm{y}^{\prime}(\mathrm{x})=0$
This is how you'll find the max/min of a funciton in Math 165

- Take the derivative
- Set $y^{\prime}(x)=0$

Differentiation and Noise

Differentiation amplifies noise

- Major problem

Arctic Sea Ice (top curve)

- Decent data
- Seems like a downward trend

Derivative (bottom curve)

- Lots of noise
- Can't tell what's happening

Example 2:

Global Temperatures (top curve)

- Decent data
- Seems to be an upward trend

Derivative (bottom curve)

- Looks like random noise
- Can't see the trend

Robotics \& Path Planning

Another application of derivatives.
Problem:

- Find a path from point A to B
- Keep the 1st and 2nd derivatives small

Why?

- $y(x)=$ Motor angle
- 1st derivative: Motor velocity
- Roughly same as voltage for a DC motor
- 2nd derivative: Motor acceleration
- Roughly same as current for a DC motor

Option 1: Linear Motion.

Assume motor follows the path

$$
y=\left\{\begin{array}{cc}
0 & t<0 \\
t / 2 & 0<t<2 \\
1 & t>2
\end{array}\right\}
$$

Advantage:

- Simple function

Disadvantage:

- Jump discontinuity in voltage (y^{\prime})
- Current goes to infinity (y ")

Find the derivatives in Matlab

```
>> t = [-1:0.01:3]' + 1e-6;
>> y = 0*(t<0) + (t/2).* (t>0).* (t<2) + (1)* (t>2);
>> dy = derivative(t,y);
>> ddy = derivative(t,dy);
>> plot(t,y,t,dy,d,ddy)
```


Option 2: Cosine Motion

Let

$$
y=\left\{\begin{array}{cc}
0 & t<0 \\
\left(\frac{1}{2}\right)\left(1-\cos \left(\frac{\pi t}{2}\right)\right) & 0<t<2 \\
1 & t>2
\end{array}\right.
$$

A little more complicated function

- 1st derivative is finite
- 2nd derivative is finite

In Matlab:

```
\(\gg t=[-1: 0.01: 3]^{\prime}+1 e-6 ;\)
\(\gg y=0 *(t<0)+((1-\cos (p i * t / 2)) / 2) . *(t>0) . *(t<2)+(1) *(t>2) ;\)
\(\gg\) dy = derivative (t,y);
>> ddy = derivative(t,dy);
>> plot(t,y,t,dy,t,ddy)
```


Other paths from A to B can be defined

- Keep acceleration constant
- Start and end with zero acceleration
- Cubic function for $\mathrm{y}(\mathrm{x})$
- Other

This is kind of the idea with path planning

- What's the best path for going from point A to point B ?
- Derivatives are used to evaluate each path

Summary:

Derivatives and differentiation are useful:

- Bank Account
- Derivative tells you how much money is being deposited or withdrawn
- Arctic Sea Ice
- How much ice is being added (positive derivative
- How much ice is being lost (negative derivative)
- DC Motors
- Voltage to the motor (1st derivative)
- Current to the motor (2nd derivative)

Graphical methods work for any function

- The derivative is the slope at any point

Numeric methods work

- If you can get the function into Matlab, you can find the derivative
- Noise causes problems: differentiation amplifies noise

