Math 166: Calculus II Integration

ECE 111 Introduction to ECE
Jake Glower - Week \#6

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Math 166: Calculus II

Topics

- Integration
- Numerical Integration
- Animation in Matlab (bouncing ball)
- Animation in Matlab (Shoot game)

Integration

Integration and differentiation both operate on functions:

- The derivative of a function is the slope
- The integral of a function is the area under the curve.

The integral of $y(x)$ is the area under the curve to the left of x

Integration is useful: with it you can

- Determine the balance in your checking account given your daily deposits and withdrawals,
- Determining the velocity and position of a motor given its acceleration, and
- Do animation in Matlab where you determine the velocity and position of a ball as it bounces given its acceleration.

Integration \& Differentiation

Integration and differentiation are also related:

- The integral of the derivative of a function is that function:

$$
\int\left(\frac{d y}{d x}\right) d x=y
$$

- The derivative of the integral of a function is that function

$$
\frac{d}{d x}\left(\int y \cdot d x\right)=y
$$

This is used in Math 166

- To find the integal of $y(x)$
- Find a function whose derivative is $\mathrm{y}(\mathrm{x})$

$$
\frac{d}{d x}(a \sin (b x))=a b \cos (b x)
$$

Hence

$$
a \sin (b x)=\int(a b \cos (b x)) \cdot d x
$$

Math 166 gets more difficult than Math 165
Example: Chain Rule:

$$
\frac{d}{d x}(a b)=\frac{d a}{d x} \cdot b+a \cdot \frac{d b}{d x}
$$

Integration by parts is the inverse of this:

$$
a b=\int\left(\frac{d a}{d x} \cdot b+a \cdot \frac{d b}{d x}\right) d x
$$

Translation:

- If you can express a function $\mathrm{y}(\mathrm{x})$ as

$$
y(x)=\frac{d a}{d x} \cdot b+a \cdot \frac{d b}{d x}
$$

then

$$
\int y(x)=a b
$$

Coming up with $\mathrm{a}(\mathrm{x})$ and $\mathrm{b}(\mathrm{x})$ can be tricky...

Graphical Integration:

Fortunately, there is an easier solution

- The integral of a function is the area to the left
- The integral of $y(x)$ at $x=4$ is
- The integral of $y(x)$ at $x=3$ (Area 1),
- Plus the area from 3 to 4 (Area 2)

Example, sketch the integral of the following curve:

- Find the area under the curve to the left of point x

One way to think about this is

- Assume $\mathrm{y}(\mathrm{x})$ is how much money you're depositing at your bank
- The balance at any time is the integral (net balance)

Assume your starting balance is $\$ 0$
$\mathrm{x}=2$:

- Nothing was added
- Balance ends up at 0
$x=4$:
- Area under curve $=+4$
- Balance ends up at +4
- $0+4=4$
$x=6$:
- Nothing was added from $4 . .6$
- Balance remains at +4
- $0+4=4$

$x=7$
- Area under curve = -3
- Balance drops to +1

As a second example, in Math 166 you'll learn

$$
\int \sin (x) \cdot d x=-\cos (x)
$$

Graphically, this looks like the following:

When $\sin (x)>0$, its integral is increasing
When $\sin (x)<0$, its integral is decreasing

Numerical Integration

Matlab can integrate using numerical methods
The integral at point x is

- The net area to the left of x, or
- The net area to the left of ($x-1$), plus the area between $x-1$ and x.

The latter lets you set up a for-loop in Matlab.

At each point in x, the integral of $y(x)$ is

- The previous integral you calculated, plus
- The area between $x-1$ and x

There are several ways to calculate the area under a curve.

Euler Integration:

Approximate the area under the curve using rectangles.

- Advantage: Simple
- Disadvantage: Slightly off

Bilinear Integration:

Approximate the area with trapezoids

- Better than Euler
- Still slightly off

Runge-Kutta Integration:

Approximate the area with polynomials

- More accurate, but
- More complicated

The higher-order the polynomial, the better the approximation.

All of these methods can be implemented in Matlab

Integrate.m

Let's implement bilinear integration.

$$
\int_{a}^{b} y \cdot d x \approx\left(\frac{y(b)+y(a)}{2}\right) \cdot(b-a)
$$

Matlab Code:

```
function [y ] = Integrate( x, dy )
% function [y ] = Integrate( x, dy )
% bilinear integration
npt = length(x);
y = 0*dy;
for i=2:npt
    y(i) = y(i-1) + 0.5*(dy(i) + dy(i-1)) * (x(i) - x(i-1));
end
end
```

Check vs. a known function

- Always a good idea

From before

$$
\frac{d}{d x}(2 \sin (3 x))=6 \cos (3 x)
$$

meaning

$$
\int 6 \cos (3 x) d x=2 \sin (3 x)
$$

Let

$$
\begin{aligned}
& d y=6 \cos (3 x) \\
& y=2 \sin (3 x)
\end{aligned}
$$

Check in Matlab:

```
>> \(x=[0: 0.1: 4]\) ';
\(>y=2 * \sin (3 * x)\);
\(\gg d y=6 * \cos (3 * x) ;\)
>> plot(x,y,'r',x,Integrate(x,dy),'b.');
```


Actual integral of $6 \cos (3 x)$ (red) and numerical solution (blue dots)

Try another function

- The integral is hard to find using Math 166 techniques
- Easy to find using Matlab

$$
\begin{aligned}
& y=\left(\frac{\cos (3 x)}{x^{2}+1}\right) \\
& z=\int y \cdot d x
\end{aligned}
$$

As long as you can put $y(x)$ into Matlab, you can find its integral. In Matlab:

```
>> dx = 0.01;
>> x = [-4:dx:4]';
>> y = cos(3*x) ./ ( x.^2 + 1 );
>> z = Integrate(x,y);
>> plot(x,y,'b',x,z,'r')
```


$y(x)$ (blue) and its integral (red)

Path Planning using Integration

In our previous lecture, differentiation was used to determine the velocity and acceleration associated with a given path of a robot arm from point a to b . With integration, you can go the other way:

- Given the acceleration (i.e. the current to the motor), determine
- The implied velocity (1st integral), and
- The implied position (2nd integral).

Assume the acceleration is a constant

$$
y^{\prime \prime}= \begin{cases}+1 & 0<t<1 \\ -1 & 1<t<2\end{cases}
$$

The velocity and position can be found using integration.

```
>> x = [-1:0.01:3]' + 1e-6;
>> ddy = 1* (x>0).* (x<1) -1* (x>1).* (x<2);
>> dy = Integrate(x,ddy);
>> y = Integrate(x,dy);
>> plot(x,y,x,dy,x,ddy)
```


Another path that avoids jump discontinuities:

```
>> ddy = sin(x*pi) .* (x>0) .* (x<2);
>> dy = Integrate(x,ddy);
>> y = Integrate(x,dy);
>> max(y)
    0.6366
>> ddy = ddy / 0.6366;
>> dy = dy / 0.6366;
>> y = y / 0.6366;
>> plot(x,y,x,dy,x,ddy)
```


Integration and Noise

Students tend to like differentiation

- Simply apply a set of rules to a function

Students tend to dislike integration

- You often have to guess the answer to find the answer
- Or guess some function so you can use integration by parts

In practice, integration is preferred over differentiation

- Differentiation amplifies noise
- Integration removes noise

Example

$$
\begin{aligned}
& y(t) \\
&=\sin (t)+\text { noise } \\
& \gg=[0: 0.001: 10]^{\prime} ; \\
& \gg y=\sin (t)+0.1^{*} \text { randn }(10001,1) ; \\
& \gg p l o t(t, y)
\end{aligned}
$$

If you differentiate this signal, you amplify the noise:
>> plot(t, derivative(t,y))

Derivative of $y(t)$: differentiation amplifies noise

If you integrate this signal, you remove the noise
$\gg \operatorname{plot}(t, y, ' b ', t, I n t e g r a t e(t, y), ' r ')$

$y(t)$ (blue) and its integral (red). Integration cleans up a signal.
Moral: Avoid differentiation. Integration is OK though.

Fun with Integration: Bouncing Ball

Matlab has pretty good animation

Assume

- Gravity is in the -y direction
- Floor at $\mathrm{y}=0$
- Left wall at $\mathrm{x}=0$
- Right wall at $\mathrm{x}=3$
- If you hit the wall of floor, the velocity changes sign (bounces)


```
Matlab script
    % Bouncing Ball
% Initial Conditions
x = 0;
y = 1;
dx = 1;
dy = 0;
t = 0;
dt = 0.01;
```

```
while(t<10)
        ddx = 0;
        ddy = -9.8;
        dx = dx + ddx*dt;
        dy = dy + ddy*dt;
    if(y<0) dy = abs(dy); end
    if(x>3) dx = -abs(dx); end
    if(x<0) dx = abs(dx); end
    x = x + dx*dt;
    y = y + dy*dt;
    plot(x,y,'ro');
    xlim([0,3]);
    ylim([0,3]);
    pause(0.01);
end
```


Result:

- Ball bounces off the floor and the walls
- (shows off better in Matlab)

Fun with Integration: Shoot Game

Launch a tennis ball. Call the function by specifying

- The initial velocity in m/s
- The initial angle in degrees, and
- The target position in meters.

Use numerical integration

- Calculate the velocity based upon the acceleration
- Calculate the position based upon the velocity

When the tennis ball hits the ground ($\mathrm{y}=0$)

- Return how far away you were from the target.


```
function [ Error ] = Shoot( Speed, Angle, Target )
    x = 0;
    y = 0;
    dx = Speed * cos(Angle*pi/180);
    dy = Speed * sin(Angle*pi/180);
    dt = 0.01;
    N = 0;
    plot(Target,0,'bx');
    xlim([0,120]);
    ylim([0,70]);
    hold on
    while(y >= 0)
        ddx = 0;
        ddy = -9.8;
        dx = dx + ddx*dt;
        dy = dy + ddy*dt;
        x = x + dx*dt;
        y = y + dy*dt;
        N = mod(N+1,10);
        if(N == 0) plot(x,y,'ro',Target,0,'bx'); end
        pause(0.01);
    end
x = x + y*(dx/dy);
Error = x - Target;
end
```

From the command window, you can call this function as

```
>> Shoot (30,60, 90)
ans = -10.3829
```

The tennis ball hit 10.3829 meters short of the target

Hitting the target is a $\mathrm{f}(\mathrm{x})=0$ problem. Using California method:

```
Target = 50 + 50*rand;
clf
x0 = 20;
y0 = Shoot(x0, 60, Target);
x1 = 30;
y1 = Shoot(x1, 60, Target);
disp([0,x1,y1]);
for n=1:5
    x2 = x0 - (x1-x0)/(y1-y0)*y0;
    y2 = Shoot(x2, 60, Target);
    disp([n,x2,y2]);
    x0 = x1;
    y0 = y1;
    x1 = x2;
    y1 = y2;
end
```


This results in

n	x	error
0	30.0000	24.6189
1.0000	24.4219	-2.1797
2.0000	24.8756	-0.2055
3.0000	24.9228	0.0021
4.0000	24.9224	-0.0000
5.0000	24.9224	-0.0000

Using Newton's method to solve for $\mathrm{f}(\mathrm{x})=0$

```
Target = 50 + 50*rand;
clf
x2 = 20;
for n=1:5
    x0 = x2;
    y0 = Shoot(x0, 60, Target);
    disp([n, x0, y0])
    x1 = x0 + 0.1;
    y1 = Shoot(x1, 60, Target);
    x2 = x0 - (x1-x0)/(y1-y0)*y0;
end
disp(y0)
```


The results are

n	x	error
1.0000	20.0000	-45.7577
2.0000	32.9302	14.6581
3.0000	30.4131	0.5809
4.0000	30.3052	0.0020
5.0000	30.3048	0.0000

Summary:

Integration is pretty useful. With it, you can

- Determine the balance of your checking account given your deposits vs. time,
- Determine the path of a robotic arm given its acceleration, and
- Run animation in Matlab for bouncing balls, shooting tennis balls, and so on.

The nice thing about numerical integration is you can integrate any function you can get into Matlab.

