## Circuits I

## ECE 111 Introduction to ECE Jake Glower - Week \#8

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

## Circuits I

Circuits I is the first course you take in ECE which covers the analysis of electrical circuits. In the first half of Circuits I, we cover DC analysis circuits with

- Voltage sources,
- Current sources, and
- Resistors.

For example, a typical circuit would be:


Typical problem in Circuits I: Determine the voltages and currents

## Definitions

Protons: Part of the nucleus of an atom.

- Protons do not move.

Electrons: Part particle, part wave.

- Negatively charge particles which do move (and carry current)

Current: The flow of electrons.

- $1 \mathrm{~A}=1.602 * 10^{19}$ electrons per second.

Voltage: The force that causes current to flow.

- The energy released when current flows.
- 1 Amp of current flowing across 1 Volt produces 1 Joule.

Resistance: The resistance to current flow.

- V = I R
- 1 Volt $=1$ Amp flowing across 1 Ohm


## Water Analogy

- The pressure (or distance) the water flows downhill corresponds to voltage
- The actual flow of water corresponds to current
- The pipe which limits the flow of the water is resistance.



## Voltage Source

- Basic circuit element
- Provices a constant voltage across terminals
- Think car battery


DC Sources


AC Source

| Voltage | Example | Enough voltage to... |
| :---: | :---: | :---: |
| 1.5 V | AA battery | Turn on a single LED |
| 5.0 V | USB Battery | Power a computer |
| 13.2 V | Car battery | Turn a motor (starter) |
| 120 V | Wall Outlet | Power a computer, hair dryer <br> $13,200 \mathrm{~V}$ |
| $345,000 \mathrm{~V}$ | Residential transmission lines | Power a residential subdivision <br> Kill a person |
|  | Power a small city <br> Create an arc 11 cm long |  |

## Current Source

A current sources sets the current flowing in a circuit. These are used for

- LED lights: The current determines the light output.
- DC Motors: Current is torque


| Current | Diameter of wire to carry. | Example |
| :---: | :---: | :---: |
| 1 uA <br> 0.000001 A | 0.0007 mm | Sleep mode for a TV remote |
| 1 mA <br> 0.001 A | 0.021 mm | Power a single LED (dim) |
| 1 A | 0.72 mm | Charging a cell phone |
| 10 A | 2.3 mm | Hair dryer |
| 100 A | 7.3 mm | Welding |

## Watts

- Energy
- Energy must always balance (energy in = energy out)

| Watts | Example |
| :---: | :---: |
| 1 mW | power-on indicator LED |
| 1 W | Human Heart |
| 10 W | Bicycling <br> (300W $=$ Tour de France) |
| 100 W | Max output of elite athletes <br> Hair dryer |
| 1 kW | Lawn Tractor (15.6hp) |
| 10 kW |  |

## Resistors:

- Resistors turn current into heat.
- Limit current flow


## Equations:

$$
\begin{aligned}
& V=I R \quad \text { Volts } \\
& P=V I=I^{2} R \quad \text { Watts }
\end{aligned}
$$



All materials have an innate resistance. For example, copper has a resistivity of

$$
\rho=1.7 \cdot 10^{-8} \Omega m
$$

If you have a copper wire that's 100 m long and 1 mm diameter, it will have a resistance of

$$
R=\frac{\rho L}{A}=\frac{\left(1.7 \cdot 10^{-8} \Omega m\right)(100 m)}{\pi \cdot(0.0005 m)^{2}}=6.8 \Omega
$$

## Resistor Color Code

Resistors used in circuits are typically made by winding a long piece of wire around a ceramic core. By varying the thickness of the wire and the length used, you can set the resistance from 0.1 Ohm to 10 M Ohms.

Color coding is used to signify the value of a resistor:


| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| black | brown | red | orange yellow | green | blue | violet | grey | white |  |

Resistance Value

| Silver | Gold | Red | Brown | Green |
| :---: | :---: | :---: | :---: | :---: |
| $+/-10 \%$ | $+/-5 \%$ | $+/-2 \%$ | $+/-1 \%$ | $+/-0.5 \%$ |

## Resistor Values:

Determine the resistance

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| black | brown | red | orange yellow | green | blue | violet | grey | white |  |



## Circuit Analysis: CircuitLab

- When you register, use your NDSU email address
- Otherwise, it's \$24/year to use

Step 1: Drag and drop the circuit elements.

- R rotates the element


Step 2: Connect the elements together and set the values

- Double click on an element to change it
- Add Node Name for voltages you want to look at


Circuit with elements connected and values set

## Step 3: Run a DC simulation

- Simulate
- DC
-     + Add Expression (choose V0, V1, V2, V3)
- Run DC Solver


Solving for the voltages in CircuitLab

If you want to know the currents

- Click on the side of the resistor the current goes into (left side of R1, top of R4)
- Run DC Solver


Solving for currents in CircuitLab

## Circuit Analysis

Techniques

- Conservation of Voltage: Kirchoff's Voltage Law,
- Conservation of Current: Kirchoff's Current Law,
- Simplification of Resistor Circuits, and
- Voltage Division


## Voltage Nodes

- Indicated by a solid line.
- All points are the same voltage
- The following circuit has four voltage nodes including ground.



## Ground:

- The voltage node which all other voltages are referenced to.
- Usually, ground is the same as earth ground - it doesn't have to be, however.
- Birds sitting on a high-voltage line treat the 13 kV line as their ground reference.

Symbols:

- If both appear in a circuit it means two different ground references
- Don't short the two together


$$
\pi / \| \pi
$$

## Conservation of Voltage: Kirchoff's Voltage Law

The sum of the voltages around any closed path must be zero

- i.e. If you short the leads of a volt meter together, you'll measure 0 V .

Example: Determine V1..V6


## Using Kirchoff's Voltage Law,

- Sum the voltages around a closed path
- To be consistent, add if you hit the + sign first, subtract if you hit the - sign first.
- Look for paths with one unknown.

Loop A:

- -V3 $+35+44=0$
- $\mathrm{V} 3=79 \mathrm{~V}$

Loop B:

- $-44-\mathrm{V} 5+16+22+15=0$
- V5 = 9V

Loop C:

- $-8+\mathrm{V} 4+\mathrm{V} 5-35=0$
- $-8+\mathrm{V} 4+9-35=0$

$\mathrm{V} 4=34 \mathrm{~V}$

Handout: Determine the unknown voltages


## Conservation of Current: Kirchoff's Current Law

The sum of the currents leaving a node must be zero

- The sum of the currents going into a node must be zero
- Current in = Current Out

Kirchoff's current law simply states you cannot create matter.

- Current is the flow of electrons, a physical entity.
- If you cannot create matter, you cannot create electrons
- (i.e. current in must match with the current out of a node).

For example, determine the unknown currents for the following circuit:
At Node \#1, current in = current out

$$
100=\mathrm{I} 1
$$

At Node \#2, current in = current out
$\mathrm{I} 1=\mathrm{I} 2+20+35+40$
$\mathrm{I} 2=5 \mathrm{~A}$
At Node \#3, current in = current out $\mathrm{I} 2+20=5+\mathrm{I} 3$
$\mathrm{I} 3=20 \mathrm{~A}$
At Node \#4, current in = current out
$\mathrm{I} 3+35=\mathrm{I} 4$
$\mathrm{I} 4=55 \mathrm{~A}$


Handout: Determine the unknown currents


## Resistor Circuits

$$
\begin{aligned}
& V=I R \quad I=\frac{V}{R} \quad R=\frac{V}{I} \\
& P=V I
\end{aligned}
$$



Given two parameters, you can determine the rest

|  | V <br> (Volts) | I <br> (Amps) | R <br> (Ohms) | P <br> (Watts) |
| :---: | :---: | :---: | :---: | :---: |
| a) | 10 V | 2 A |  |  |
| b) |  |  | 20 Ohms | 5 Watts |
| c) | 10 V |  | 5 Ohms |  |
| d) |  | 2 A |  | 6 Watts |



## Resistors in Series

- Resistors in series add.

$$
V=V_{1}+V_{2}+V_{3}
$$

From V = IR

$$
\begin{aligned}
& V=I R_{1}+I R_{2}+I R_{3} \\
& V=I\left(R_{1}+R_{2}+R_{3}\right)
\end{aligned}
$$



The effective resistance is

$$
R_{n e t}=R_{1}+R_{2}+R_{3}
$$

## Resistors in Parallel:

These add as the sum of the inverses, inverted.

$$
I_{a}=I_{1}+I_{2}+I_{3}
$$

From V = IR

$$
\begin{aligned}
& I_{a}=\left(\frac{V_{i n}}{R_{1}}\right)+\left(\frac{V_{i n}}{R_{2}}\right)+\left(\frac{V_{i n}}{R_{3}}\right) \\
& I_{a}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) V_{\text {in }} \\
& V_{\text {in }}=I_{a}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1} \\
& R_{\text {net }}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1}
\end{aligned}
$$



## Example 1: Find the resistance from $\mathbf{a}$ to $\mathbf{b}$

The 200 and 400 Ohm resistor are in series

$$
200+400=600
$$

The 600 (net) and 300 are in parallel

$$
300 \text { ॥ } 600=\left(\frac{1}{300}+\frac{1}{600}\right)^{-1}=200
$$

200 (net) and 100 are in series

$$
200+100=300
$$



The net resistance is 300 Ohms.

In CircuitLab you can check your answer:

- Build the circuit
- Apply a V test voltage
- Measure the current. From V = IR, you should get $1 / 300 \mathrm{~A}$



## Example 2: Find the net resistance Rab

The 200 and 300 are in parallel

$$
200 \text { || } 300=120 \text { Ohms }
$$

This is in series with 500

$$
120+500=620
$$

This is in parallel with 400

$$
620 \| 400=243.137
$$

This is in series with 100


$$
243.137+100=\mathbf{3 4 3 . 1 3 7}
$$

If you apply 1 V , you should get $2.914 \mathrm{~mA}(1 / 343.137)$


Handout: Determine the resistance from a to b


## Voltage Division:

The voltage V3 is

$$
\begin{aligned}
& I=\left(\frac{V_{i n}}{R_{1}+R_{2}+R_{3}}\right) \\
& V_{3}=I R_{3} \\
& V_{3}=\left(\frac{R_{3}}{R_{1}+R_{2}+R_{3}}\right) V_{i n}
\end{aligned}
$$



## Circuit Analysis with Voltage Division

Find V1, V2, V3 via voltage division

$$
V_{3}=\left(\frac{200}{200+30}\right) V_{2}
$$



V1: Find the net resistance to ground at V1 looking right $200+30=230$ Ohms
230 || $150=90.79 \mathrm{Ohms}$
$90.79+200=110.79$ Ohms
110.79 || $100=52.56$ Ohms

By voltage division $V_{1}=\left(\frac{52.56}{52.56+10}\right) 10 \mathrm{~V}$ $V_{1}=8.4015 \mathrm{~V}$


V2 Find the net resistance to ground at V2 looking right

- V1 $=8.4015 \mathrm{~V}$
$200+30=230 \mathrm{Ohms}$
$230 \| 150=90.79 \mathrm{Ohms}$
SO...

$$
\begin{aligned}
& V_{2}=\left(\frac{90.79}{90.79+20}\right) V_{1} \\
& V_{2}=6.8849 \mathrm{~V}
\end{aligned}
$$

and

$$
\begin{aligned}
& V_{3}=\left(\frac{200}{200+30}\right) V_{2} \\
& V_{3}=5.9868 \mathrm{~V}
\end{aligned}
$$



## Checking in CircuitLab

- V1 $=8.4015 \mathrm{~V}$
- $\mathrm{V} 2=6.8849 \mathrm{~V}$
- V3 $=5.9868 \mathrm{~V}$



## Practice Problem:

Find the voltages using voltage division


## Summary

The basic equations for electrical circuits are

- $\mathrm{V}=\mathrm{IR}$
- $\mathrm{P}=\mathrm{VI}$

Resistor circuits can sometimes be simplified

- Resistors in series add
- Resistors in parallel add as $\left(\Sigma\left(\frac{1}{R_{i}}\right)\right)^{-1}$

At any node, current in equals current out

- Conservation of current

Around any closed path, the sum of the voltages must add to zero

- Conservation of voltage

