## EE 311 Circuits II: Phasors <br> ECE 111 Introduction to ECE Jake Glower - Week \#13

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

## ECE 311 Circuits 2: Phasors

## Topics

- Phasors
- Representing voltages using phasors
- Representing RLC using phasors
- AC circuit analysis using phasors
- HP42 Calculator


## Introduction

DC Analysis: First part of Circuits I
With DC circuits:

- Voltages can be expressed by a real number
- Currents can be expressed with real numbers, and
- Resistance's can be expressed with real numbers.

AC Analysis: End of Circuits I, all of Circuits II

- Voltages have two terms: sine \& cosine
- Impedances include Resistors, Inductors, \& Capacitors

Complex numbers are needed for AC analysis

## Representation of Complex Numbers:

Rectangular Form:

$$
P=a+j b
$$

Polar Form

$$
P=r \angle \theta
$$



## Phasor Representation of Voltages

Euler's identity states

$$
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

If you assume all functions are of the form of $e^{j \omega t}$, then

$$
\cos (\omega t)=\operatorname{real}\left(e^{j \omega t}\right)
$$

Likewise, the phasor (complex-number) representation for cosine is one
$1 \leftrightarrow \cos (\omega t)$


If you multiply by $(a+j b)$

$$
\begin{aligned}
(a+j b) e^{j \omega t} & =(a+j b)(\cos (\omega t)+j \sin (\omega t)) \\
& =(a \cos (\omega t)-b \sin (\omega t))+j(\cdots)
\end{aligned}
$$

and take the real part you get the phasor representation for a generalized sine wave

$$
a+j b \leftrightarrow a \cos (\omega t)-b \sin (\omega t)
$$

You can also represent voltages in polar form:

$$
r \angle \theta \leftrightarrow r \cos (\omega t+\theta)
$$



Example: Determine $\mathrm{x}(\mathrm{t})$ for the following waveform:


Typical Sinusoid: Determine $\times(\mathrm{t})$

The frequency comes from the period

$$
\begin{aligned}
& T=6.28 \mathrm{~ms} \\
& f=\frac{1}{T}=159.2 \mathrm{~Hz}=159.2 \frac{\text { cycles }}{\text { second }} \\
& \omega=2 \pi f=1000 \frac{\mathrm{rad}}{\mathrm{sec}} \\
& \theta=-\left(\frac{1 \mathrm{~ms} \text { delay }}{6.28 \mathrm{~ms} \text { period }}\right) 2 \pi=-1.0 \text { radian }=-57.3^{0}
\end{aligned}
$$

meaning (in polar form)

$$
x(t)=5 \cos \left(1000 t-57.3^{0}\right)=5 \angle-57.3^{0}
$$

In rectangular form

$$
\begin{aligned}
& X=2.70-j 4.21 \\
& x(t)=2.70 \cos (1000 t)+4.21 \sin (1000 t)
\end{aligned}
$$

## Phasor Representation for Impedance's

When dealing with AC signals, resistors, capacitors, and inductors can all be used. Phasor analysis converts each of these to a complex impedance.

Resistors: The VI relationship for a resistor is $V=I R$

The phasor impedance of a resistor is R .
$R \rightarrow R$


Inductors: The VI relationship for an inductor is

$$
V=L \frac{d I}{d t}
$$

Assuming all signals are in the form of $e^{j \omega t}$, this means

$$
V=L \frac{d}{d t}\left(e^{j \omega t}\right)=j \omega L e^{j \omega t}=j \omega L \cdot I
$$

The impedance of an inductor is $j \omega L$

$$
L \rightarrow j \omega L
$$



Capacitors: The VI relationship for a capacitor is

$$
V=\frac{1}{C} \int I d t
$$

Assuming all signals are in the form of $e^{j \omega t}$, this means

$$
V=\frac{1}{C} \int\left(e^{j \omega t}\right) ; d t=\left(\frac{1}{j \omega C}\right) e^{j \omega t}=\left(\frac{1}{j \omega C}\right) l
$$

The impedance of a capacitor is $\left(\frac{1}{j \omega C}\right)$

$$
C \rightarrow \frac{1}{j \omega C}
$$



## ELI the ICE Man

- For inductors (L), voltage leads current (ELI)
- For capacitors (C), current leads voltage (ICE).

ELI: If $\omega L=1$ then

$$
\begin{aligned}
& L \rightarrow j \omega L=j=1 \angle 90^{0} \\
& V=I \cdot j \omega L=I \cdot 1 \angle 90^{0}
\end{aligned}
$$

Voltage leads current (ELI) for inductors


ICE: For capacitors, if $\omega C=1$, then

$$
\begin{aligned}
& \frac{1}{j \omega C}=-j=1 \angle-90^{0} \\
& V=I \cdot 1 \angle-90^{\circ}
\end{aligned}
$$

Voltage lags current by 90 degrees for capacitors (ICE)


## Phasor Summary

| Component | Phasor Representation |
| :---: | :---: |
| $V=a \cos (w t)-b \sin (w t)$ | $a+j b$ |
| $R$ | $R$ |
| $L$ | $j w L$ |
| $C$ | $1 / j w C$ |

## Simplification of RLC circuits

Resistor Circuits:

- Resistors in series add
- Resistors in parallel add as $\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+. .\right)^{-1}$

RLC Circuits:

- Same as resistor circuits
- Except you're dealing with complex numbers.

Example: Determine the impedance Zab.


Solution:
-j 100 and +300 are in series

$$
-j 100+300=300-j 100
$$

This is in parallel with 200

$$
(200) \|(300-j 100)=\left(\frac{1}{200}+\frac{1}{300-j 100}\right)^{-1}=123.07-j 15.38
$$

Which is in series with 200

$$
(200)+(123.07-j 15.38)=323.07-j 15.38
$$

Which is in parallel with +j 300

$$
(j 300)|\mid(323.08-j 15.38)=156.85+j 161.83
$$

which is in series with 100

$$
(100)+(156.85+j 161.83)=256.85+j 161.83
$$

Answer:

$$
Z_{a b}=256.85+j 161.83
$$

## Solving in Matlab

```
>> Z2 = 1 / (1/200 + 1/(300 - j*100) )
Z2 = 1.2308e+002 -1.5385e+001i
>> Z1 = 1 / (1/(j*300) + 1/(200 + Z2) )
Z1 = 1.5685e+002 +1.6183e+002i
>> Zab = 100 + Z1
Zab = 2.5685e+002 +1.6183e+002i
```



## Solving with an HP42



## Solving in CircuitLab

Zab tells you that current and voltage are related by

$$
\begin{aligned}
& V=I \cdot Z_{a b} \\
& V=I \cdot(245.8456+j 161.8257) \\
& V=I \cdot\left(294.32 \angle 33.35^{0}\right)
\end{aligned}
$$

Translation:

- The voltage will be 294.32 times larger than the current
- Voltage leads current by 33.35 degrees

Let $\omega=1 \mathrm{rad} / \mathrm{sec}$

- 0.1591 Hz
- $\omega=2 \pi f$
- $\mathrm{L}=\mathrm{Z}, \quad \mathrm{C}=1 / \mathrm{Z}$


Plot voltage and current

- $Z_{a b}=294.32 \angle 33.35^{0}$
- The peak voltage is 294 times the peak current
- The peak voltage is 33 degrees before the peak current




## Example 2: Determine Zab



## Solution

$$
\begin{aligned}
& (10)+(-j 60)=10-j 60 \\
& (10-j 60) \|(j 50)=125.00+j 175.00 \\
& (125.00+j 175.00)+(40)=165.00+j 175.00 \\
& (165.00+j 175.00) \|(30-j 20)=31.42-j 14.98
\end{aligned}
$$

answer:

$$
Z_{a b}=31.42-j 14.98
$$



## Solve in Matlab:

```
>> Z1 = 10 - j*60
Z1 = 10.0000-60.0000i
>> Z2 = 1 / (1/Z1 + 1/(j*50))
Z2 = 1.2500e+002 +1.7500e+002i
>> Z3 = Z2 + 40
Z3 = 1.6500e+002 +1.7500e+002i
>> Z4 = 1/( 1/Z3 + 1/(30-j*20) )
Z4 = 31.4263-14.9799i
```

Solve using an HP42


Solve with CircuitLab:

- Same trick as before: Let $\omega=1$

$$
\begin{aligned}
& V=I \cdot(31.4263-j 14.9799) \\
& V=I \cdot\left(34.81 \angle-25.49^{0}\right)
\end{aligned}
$$

This means

- Voltage should be 34.81 times larger than current
- Voltage should lag behind current by 25.49 degrees.


CircuitLab simulation to check the impedance
$Z_{a b}=34.81 \angle-25.49^{0}$

- Voltage is 34.81 times the current
- Voltage lags current by 25.49 degrees




## Circuit Analysis with Phasors

Everything we did at DC still works for AC analysis, only now with complex numbers,.

Example 1: RC Circuit

- Determine V1(t)
- $V_{0}=10 \sin (628 t)$


Step 1: Replace the capacitor with its complex impedance. Since the input is $628 \mathrm{rad} / \mathrm{sec}$, that's the frequency you care about

$$
\begin{aligned}
& \omega=628 \mathrm{rad} / \mathrm{sec} \\
& Z_{c}=\frac{1}{j \omega C}=-j 159 \Omega \\
& V_{0}=0-j 10
\end{aligned}
$$



Step 2: Solve just like you did with a DC circuit, only with complex numbers

$$
\begin{aligned}
& V_{1}=\left(\frac{-j 159}{-j 159+400}\right)(0-j 10) \\
& V_{1}=-3.436-j 1.368 \\
& v_{1}(t)=-3.436 \cos (628 t)+1.368 \sin (628 t)
\end{aligned}
$$

In polar form

$$
\begin{aligned}
& V_{1}=3.694 \angle-158.3^{0} \\
& v_{1}(t)=3.694 \cos \left(628 t-158.3^{0}\right)
\end{aligned}
$$



Check in CircuitLab

- Time-domain response
- 20ms (2 cycles)


Note from the CircuitLab plot, matches our calculations:

- The peak for V1 (orange) is 3.694 V
- V1 is delayed from V0 by 4.5 ms

$$
\theta=-\left(\frac{\text { delay }(\mathrm{ms})}{\text { period }(\mathrm{ms})}\right) 360^{0}=-\left(\frac{4.5 \mathrm{~ms}}{10 \mathrm{~ms}}\right) 360^{0}=-162^{0}
$$



## Example 2: 3-Stage RC Circuit

Find the voltages for the following circuit


Step 1: Convert to phasors
$V_{0}=10 \sin (100 t)$

$$
\begin{aligned}
& V_{0}=0-j 10 \\
& \omega=100
\end{aligned}
$$

$0.01 \mathrm{~F}: \quad Z_{c}=\frac{1}{j \omega C}=-j 50 \Omega$
0.02F: $\quad Z_{c}=\frac{1}{j \omega C}=-j 40 \Omega$
0.03F: $\quad Z_{c}=\frac{1}{j \omega C}=-j 33.33 \Omega$


Step 2: Write N equations for N unknowns
V0: $V_{0}=0-j 10$
V1: $\left(\frac{V_{1}-V_{0}}{5}\right)+\left(\frac{V_{1}}{100}\right)+\left(\frac{V_{1}}{-j 50}\right)+\left(\frac{V_{1}-V_{2}}{10}\right)=0$
V2: $\left(\frac{V_{2}-V_{1}}{10}\right)+\left(\frac{V_{2}}{150}\right)+\left(\frac{V_{2}}{-j 40}\right)+\left(\frac{V_{2}-V_{3}}{15}\right)=0$
V3: $\left(\frac{V_{3}-V_{2}}{15}\right)+\left(\frac{V_{3}}{200}\right)+\left(\frac{V_{3}}{-j 33.33}\right)=0$


Step 3: Solve. First, group terms

$$
\begin{aligned}
& V_{0}=-j 10 \\
& -\left(\frac{1}{5}\right) V_{0}+\left(\frac{1}{5}+\frac{1}{100}+\frac{1}{-j 50}+\frac{1}{10}\right) V_{1}+\left(\frac{-1}{10}\right) V_{2}=0 \\
& \left(\frac{-1}{10}\right) V_{1}+\left(\frac{1}{10}+\frac{1}{150}+\frac{1}{-j 40}+\frac{1}{15}\right) V_{2}+\left(\frac{-1}{15}\right) V_{3}=0 \\
& \left(\frac{-1}{15}\right) V_{2}+\left(\frac{1}{15}+\frac{1}{200}+\frac{1}{-j 33.33}\right) V_{3}=0
\end{aligned}
$$

Place in matrix form

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\left(\frac{-1}{5}\right) & \left(\frac{1}{5}+\frac{1}{100}+\frac{1}{-j 50}+\frac{1}{10}\right) & \left(\frac{-1}{10}\right) & 0 \\
0 & \left(\frac{-1}{10}\right) & \left(\frac{1}{10}+\frac{1}{150}+\frac{1}{-j 40}+\frac{1}{15}\right) & \left(\frac{-1}{15}\right) \\
0 & 0 & \left(\frac{-1}{15}\right) & \left(\frac{1}{15}+\frac{1}{200}+\frac{1}{-j 33.33}\right)
\end{array}\right]\left[\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{c}
-j 10 \\
0 \\
0 \\
0
\end{array}\right]
$$

## Put into MATLAB and solve

```
a1 \(=[1,0,0,0] ;\)
a2 \(=[-1 / 5,1 / 5+1 / 100+1 /(-j * 50)+1 / 10,-1 / 10,0] ;\)
a3 \(=[0,-1 / 10,1 / 10+1 / 150+1 /(-j * 40)+1 / 15,-1 / 15] ;\)
\(a 4=[0,0,-1 / 15,1 / 15+1 / 200+1 /(-j * 33.33)] ;\)
\(A=[a 1 ; a 2 ; a 3 ; a 4]\)
    \(\begin{array}{rrrr}1.0000 & 0 & 0 & 0 \\ -0.2000 & 0.3100+0.0200 i & -0.1000 & 0 \\ 0 & -0.1000 & 0.1733+0.0250 i & -0.0667 \\ 0 & 0 & -0.0667 & 0.0717+0.0300 i\end{array}\)
B = [-j*10;0;0;0];
\(\mathrm{V}=\operatorname{inv}(\mathrm{A}) * B\)
\begin{tabular}{lr} 
V0 & \(0-10.0000 i\) \\
V1 & \(-1.6314-8.0724 i\) \\
V2 & \(-3.4430-5.3506 i\) \\
V3 & \(-4.4982-3.0942 i\)
\end{tabular}
```

meaning

$$
\begin{aligned}
& V_{0}=10 \sin (100 t) \\
& V_{1}=-1.6314 \cos (100 t)+8.0742 \sin (100 t) \\
& V_{2}=-3.4430 \cos (100 t)+5.5306 \sin (100 t) \\
& V_{3}=-4.4982 \cos (100 t)-3.0942 \sin (100 t)
\end{aligned}
$$

The magnitude of each voltage is:

```
abs(V)
    10.0000
    8.2356
    6.3627
    5.4596
```


## CircuitLab Simulation




|  | $\mid$ Vin $\mid$ | $\|\mathrm{V} 1\|$ | $\|\mathrm{V} 2\|$ | $\|\mathrm{V} 3\|$ |
| :---: | :---: | :---: | :---: | :---: |
| Calculated | 10.0000 V | 8.2356 V | 6.3627 V | 5.4596 V |
| CircuitLab | 10.00 V | 8.231 V | 6.348 V | 5.435 V |

## Summary

Real numbers work well when analyzing DC circuits
Complex numbers work well when analyzing AC circuits
Everything that we did with DC circuits with AC circuits - only you wind up with complex numbers

For voltages

- The real part represents the cosine term
- The complex part is represents the minus-sine term

For impedances

- Resistors are real ( R )
- Inductors are $+\mathrm{j} X(Z=j w L)$
- Capacitors are $-\mathrm{jX}(\mathrm{Z}=1 /(\mathrm{jwC}))$

