# Signals and Systems Filters 

## ECE 111 Introduction to ECE Jake Glower - Week \#14

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

## Filters:

A filter is any circuit whose gain varies with frequency

- Any circuit with inductors and/or capacitors
- Anything that satisfies a differential equation

Filter design looks at how to choose the filter to

- Pass frequencies you want, and
- Reject frequencies you don't want.


## Example: Bass Boost

- https://www.youtube.com/watch?v=zKfc_VoyVUM\&feature=youtu.be
- Building a sub-woofer crossover
- Pass frequencies below 250 Hz
- Reject frequencies above 400 Hz



## Differential Equations

Differential equations describe almost everything

- Why Calculus I, II, III, IV are required

Any circuit with inductors and capacitors are described by differential equations

## Inductor:

$$
\begin{aligned}
& E=\frac{1}{2} L I^{2} \\
& \frac{d}{d t}(E)=P=V I=L I \frac{d I}{d t} \\
& V=L \frac{d I}{d t}
\end{aligned}
$$

Capacitor:

$$
\begin{array}{ll}
E=\frac{1}{2} C V^{2} & \text { Joules } \\
\frac{d}{d t}(E)=V I=C V \frac{d V}{d t} & \text { Watts } \\
I=C \frac{d V}{d t} &
\end{array}
$$

## Transfer Functions

Assume a 3rd-order differential equation relating x and y :

$$
\begin{aligned}
& y^{\prime \prime \prime}+4 y^{\prime \prime}+6 y^{\prime}+8 y=10 x^{\prime}+30 x \\
& y^{\prime} \equiv \frac{d y}{d x}
\end{aligned}
$$

Assume all functions are in the form of

$$
y(t)=e^{s t}
$$

Then

$$
\frac{d}{d t}\left(e^{s t}\right)=s \cdot e^{s t}
$$

sY means the derivative of $y(t)$

With this assumption

$$
y^{\prime \prime \prime}+4 y^{\prime \prime}+6 y^{\prime}+8 y=10 x^{\prime}+30 x
$$

becomes

$$
s^{3} Y+4 s^{2} Y+6 s Y+8 Y=10 s X+30 X
$$

Solving for Y :

$$
Y=\left(\frac{10 s+30}{s^{3}+4 s^{2}+6 s+8}\right) X=G(s) X
$$

$G(s)$ is called the transfer function of the system.

- Essentially, it is the gain from X to Y

Example: Find the differential equation relating X and Y given

$$
Y=\left(\frac{10 s+30}{s^{3}+4 s^{2}+6 s+8}\right) X
$$

Solution: First, cross multiply

$$
\left(s^{3}+4 s^{2}+6 s+8\right) Y=(10 s+30) X
$$

Next, replace each 's' with $\frac{\frac{d}{d t}}{}$

$$
y^{\prime \prime \prime}+4 y^{\prime \prime}+6 y^{\prime}+8 y=10 x^{\prime}+30 x
$$

or equivalently

$$
\frac{d^{3} y}{d t^{3}}+4 \frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+8 y=10 \frac{d x}{d t}+30 x
$$

## Handout

Problem 1: Determine the transfer function from the differential equation

$$
y^{\prime \prime}+5 y^{\prime}+8 y=2 x^{\prime}+10 x
$$

## Handout

Problem 2: Determine the differential equation which relates X and Y

$$
Y=\left(\frac{10 s+20}{s^{2}+6 s+5}\right) X
$$

## Transfer Functions with DC:

Find $\mathrm{y}(\mathrm{t})$ :

$$
Y=\left(\frac{10 s+30}{s^{3}+4 s^{2}+6 s+8}\right) X
$$

$$
x(t)=2
$$

Solution:

$$
\begin{aligned}
& x(t)=2 \cdot e^{0 t}=2 \\
& s=0 \\
& X=2+j 0 \\
& Y=\left(\frac{10 s+30}{s^{3}+4 s^{2}+6 s+8}\right)_{s=0}(2+j 0)=7.50 \\
& y(t)=7.5
\end{aligned}
$$

## Transfer Function with a Sinusoidal Input

$$
Y=\left(\frac{10 s+30}{s^{3}+4 s^{2}+6 s+8}\right) X \quad x(t)=2 \cos (3 t)
$$

Convert to phasor form

$$
\begin{aligned}
& s=j 3 \\
& X=2+j 0 \\
& Y=\left(\frac{10 s+30}{s^{3}+4 s^{2}+6 s+8}\right)_{s=j 3} \cdot(2+j 0)
\end{aligned}
$$

$$
a+j b \rightarrow a \cdot \cos (\omega t)-b \cdot \sin (\omega t)
$$

$$
Y=-2.566-j 1.318
$$

rectangular form
$Y=2.885 \angle-152.8^{0}$
polar form
meaning

$$
\begin{aligned}
& y(t)=-2.566 \cos (3 t)+1.318 \sin (3 t) \\
& y(t)=2.885 \cos \left(3 t-152.8^{0}\right)
\end{aligned}
$$

Either form is valid

## Note: Answer varies with frequency

- It's a filter

Example: Find $y(t)$ for an input at $30 \mathrm{rad} / \mathrm{sec}$ :

$$
Y=\left(\frac{10 s+30}{s^{3}+4 s^{2}+6 s+8}\right) X
$$

$$
x(t)=2 \cos (30 t)
$$

Solution:

$$
\begin{aligned}
& s=j 30 \\
& X=2+j 0 \\
& Y=\left(\frac{10 s+30}{s^{3}+4 s^{2}+6 s+8}\right)_{s=j 30} \cdot(2+j 0) \\
& Y=(-0.0223-j 0.0007)
\end{aligned}
$$

which means

$$
y(t)=-0.0223 \cos (30 t)+0.0007 \sin (30 t)
$$

## MATLAB Code:

Input the frequency for $s$ and evaluate $G(s)$

```
\(s=0 ;\)
\(X=2\);
\(Y=(10 * s+30) /\left(s^{\wedge} 3+4 * s^{\wedge} 2+6 * s+8\right) *(2)\)
\(Y=7.5000\)
s = j*3;
\(X=2+j * 0 ;\)
\(Y=(10 * s+30) /\left(s^{\wedge} 3+4 * s^{\wedge} 2+6 * s+8\right) *(2+j * 0)\)
\(\mathrm{Y}=-2.5665-1.3179 i\)
\(s=j * 30 ;\)
\(X=2+j * 0 ;\)
\(Y=(10 * s+30) /\left(s^{\wedge} 3+4 * s^{\wedge} 2+6 * s+8\right) *(2+j * 0)\)
\(Y=-0.0223-0.0007 i\)
```

You can also input $\mathrm{G}(\mathrm{s})$ as a transfer function and use the MATLAB function evalfr()

```
G = tf([10,30],[1,4,6,8])
    10s + 30
s^3+4 s^2 + 6s + 8
Y = evalfr(G, 0) * 2
Y = 7.5000
Y = evalfr(G, j*3) * 2
Y = -2.5665 - 1.3179i
Y = evalfr(G, j*30) * 2
Y = -0.0223 - 0.0007i
```

which are the same answers as before.

## Handout

Problem 3: Find $\mathrm{y}(\mathrm{t})$

$$
Y=\left(\frac{10}{(s+1)(s+3)}\right) X
$$

$$
x(t)=4 \cos (5 t)+2 \sin (5 t)
$$

## Handout

$$
Y=\left(\frac{10}{(s+1)(s+3)}\right) X
$$

$$
x(t)=4 \cos (5 t)+2 \sin (5 t)
$$

Answer:

$$
\begin{aligned}
& s=j 5 \\
& X=4-j 2 \\
& Y=\left(\frac{10}{(s+1)(s+3)}\right)_{s=j 5}(4-j 2) \\
& Y=-1.448-j 0.407
\end{aligned}
$$

meaning
$y(t)=-1.448 \cos (5 t)+0.407 \sin (5 t)$

## Frequency Response of a Filter:

- If the input is known, plug in $s=j w$
- For a general solution, sweep w

Example: Determine the gain of $\mathrm{G}(\mathrm{s})$ over the range of 0 to $10 \mathrm{rad} / \mathrm{sec}$ for

$$
G(s)=\left(\frac{10 s+30}{s^{3}+4 s^{2}+6 s+8}\right)
$$

Option 1: Compute the gain at a bunch of points from 0 to $10 \mathrm{rad} / \mathrm{sec}$, or Option 2: Use MATLAB. Input the frequencies you want to evaluate:

```
w = [0:5:20]';
S = j*W;
G = (10*s + 30) ./ (s.^3 + 4*s.^2 + 6*s + 8);
```

Note that dot-notation is required.

In matlab:

```
w = [0:0.05:10]';
S = j*W;
G = (10*s + 30) ./ (s.^3 + 4*s.^ 2 + 6* s +
8) ;
plot(w, abs(G));
xlabel('Frequency (rad/sec)');
ylabel('Gain');
```


## What this graph tells you is:

- The gain is large for frequencies below about 2 $\mathrm{rad} / \mathrm{sec}$ and small for frequencies above $6 \mathrm{rad} / \mathrm{sec}$. Since this passes low frequencies, it is called $a$ low-pass filter
- The system has a resonance (a large gain) for frequencies near $1.5 \mathrm{rad} / \mathrm{sec}$.



## Phase Plot

- Not sure what this really tells you
- Usually we only deal with amplitude (gain)

```
>> plot(w,angle(G)*180/pi);
>> xlabel('Frequency (rad/sec)');
>> ylabel('Angle (degrees)');
```



## fminsearch() and m-files

Problem: How to design a filter?

- What is a 'good' transfer function?
- Covered in ECE 343 \& ECE 321

Knowing nothing about filter design, you can still design a filter using Matlab


## fminsearch()

- Really useful Matlab function
- Finds the minimum of a function

Example: Find $\sqrt{2}$

```
function [ J ] = cost( z )
    e = z*z - 2;
    J = e^2;
end
```

Minimize in Matlab

```
>> [a,b] = fminsearch('cost',4)
a = 1.4143
b = 1.5665e-008
```


## Example: Shape of a hanging chain

Minimize the potential energy

$$
P E=m g\left(y_{1}+y_{2}+\ldots+y_{9}\right)
$$

Constrain the length to be 12 meters (ish)

$$
J=P E+\alpha(12-L)^{2}
$$

```
function [ J ] = cost_chain( Z )
    Y = [0;Z;0];
    PE = sum(Y);
    L = 0;
    for i=2:11
        L = L + sqrt (1 + (Y(i) - Y(i-1))^2);
    end
    E = (12 - L);
    J = PE + 100*E^2;
    plot([0:10],Y,'.-');
    ylim([-5,1]);
    pause(0.01);
    end
y = i .* (i-10) / 5;
[a,b] = fminsearch('cost',y)
```



Filter Design with fminsearch:

$$
\left|G_{d}(s)\right|=\left\{\begin{array}{cc}
1 & \omega<3 \\
0 & \omega>3
\end{array}\right.
$$

Step 1: Assume the form of the filter

$$
G(s)=\left(\frac{a}{\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)}\right)
$$

## Define the cost (J)

- Minimum is when $\mathrm{G}(\mathrm{s})=$ desired filter

$$
\begin{aligned}
& E(s)=|G(s)|-\left|G_{d}(s)\right| \\
& J=\sum E^{2}
\end{aligned}
$$

Guess $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ to minimize J


```
function [ J ] = costF( z )
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e = z(5);
    w = [0:0.1:10]';
    s = j*W;
    Gideal = 1 * (w < 3);
    G = a./ ( (s.^2 + b*s + c).*(s.^2 + d*s + e) );
    e = abs(Gideal) - abs(G);
    J = sum(e .^ 2);
    plot(w,abs(Gideal),w,abs(G));
    ylim([0,1.2]);
    pause(0.01);
end
```

Call fminsearch with an initial guess for ( $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ )



Sidelight: The filter isn't arbitrary.

- When you're close to a zero, the gain is small (multiply by a small number)
- When you're close to a pole, the gain is large (divide by a small number)
- Poles are $\{s=-0.8112 \pm \mathrm{j} 1.0362, s=-0.3071 \pm \mathrm{j} 2.5782\}$



## Example 2: Design a filter to match

Assume

$$
G(s)=\left(\frac{a}{(s+b)\left(s^{2}+c s+d\right)\left(s^{2}+e f+g\right)}\right)
$$

Use a piecewise linear model for Gideal

```
w = [0:0.1:10]';
s = j*w;
Gideal = (0.2667*w+0.2) .* (w < 3)
    +(1.6 - 0.2*W) .* (w >= 3).* (w<6);
```



## Matlab Function:

```
function [ J ] = costF ( z )
    \(\mathrm{a}=\mathrm{z}(1)\);
    \(\mathrm{b}=\mathrm{z}(2)\);
    \(\mathrm{c}=\mathrm{z}(3)\);
    \(\mathrm{d}=\mathrm{z}(4)\);
    e = z(5);
    f \(=\mathbf{z}(6)\);
\(\mathrm{w}=[0: 0.1: 10]^{\prime} ;\)
s = j*w;
Gideal \(=(0.2667 * w+0.2) . *(w<3)+(1.6-0.2 * w) . *(w>=3) . *(w<6) ;\)
\(G=a . /((s+b) . *(s . \wedge 2+c * s+d) . *(s . \wedge 2+e * s+f)) ;\)
e = abs(Gideal) - abs(G);
J = sum (e .^ 2);
plot(w, abs(Gideal), w, abs(G));
ylim([0,1.2]);
pause(0.01);
end
```


## Optimization by hand

```
>> costF([1,2,3,4,5,6])
ans = 27.6268
>> costF([100,1,2,9,2,25])
ans = 13.1412
>> costF([100,1,1,9,1,25])
ans = 7.1906
```



## Optimization with fminsearch()

```
>> [Z,e] = fminsearch('costF',[100,1,1,9,1,25])
```

|  | a | b | c | d | e | f |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Z}=$ | 651.9876 | 6.7179 | 1.6175 | 9.2075 | 1.3025 | 26.6229 |
| $\mathrm{e}=$ | 0.5270 |  |  |  |  |  |



## Summary:

A filter is a circuit where the gain depends upon frequency

- Any circuit with inductors and/or capacitors

Filter analysis is easy with complex numbers

- Plug in $s \rightarrow j \omega$
- Use phasors to represent the input and output

Filter design is harder

- Matlab's fminsearch() allows you to design pretty good filters even if you know nothing about filter design
- Other methods exist and are covered in Analog Electronis and Signals \& Systems

