Signals and Systems

Fourier Transform: Solving differential equations when the input is periodic

ECE 111 Introduction to ECE Jake Glower - Week \#17

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Transfer Function for a Winkessel Model

Winkessel Model

- Models the cardiovascular system
- Given I(t), determine the V(t)
- Given aortic flow (AOF), determine aortic pressure (AOP)

Phasors and s-Notation

$$
\begin{aligned}
& R \rightarrow R \\
& L \rightarrow j \omega L=L s \\
& C \rightarrow \frac{1}{j \omega C}=\frac{1}{C s}
\end{aligned}
$$

The resistance of the above circuit is then

$$
Z=\left(\frac{1}{1 / C s}+\frac{1}{L s+R}\right)^{-1}=\left(\frac{L s+R}{C L s^{2}+C R s+1}\right)
$$

Winkessel Model:

Assume

- $\mathrm{R}=1$
- $\mathrm{L}=0.1$
- $\mathrm{C}=1$
you get

$$
V=\left(\frac{s+10}{s^{2}+10 s+10}\right) I
$$

Given $I(t)$, determine $V(t)$

Case 1: Sinusoidal Input

Assume

$$
I(t)=3 \sin (10 t)
$$

This is a phasor problem.

$$
\begin{aligned}
& I(t)=0-j 3 \\
& s=j 10 \\
& V=\left(\frac{s+10}{s^{2}+10 s+10}\right)_{s=j 10} \cdot(0-j 3) \\
& V=-0.3149-0.0166 \mathrm{i}
\end{aligned}
$$

meaning

$$
v(t)=-0.3149 \cos (10 t)+0.0166 \sin (10 t)
$$

Case 2: Input is Periodic but Not a Sinusoid

- What do you do when $\mathrm{i}(\mathrm{t})$ is not a sinusoid?

Find $V(t)$ when

$$
V=\left(\frac{s+10}{s^{2}+10 s+10}\right) I
$$

$\mathrm{I}(\mathrm{t})$ is periodic every $\frac{2 \pi}{10}$ seconds

$$
I\left(t+\frac{2 \pi}{10}\right)=I(t)
$$

and

$$
I(t)= \begin{cases}1 & 0<t<0.2 \\ 0 & \text { otherwise }\end{cases}
$$

Solution: Fourier Transform

Assume

$$
x(t)=x(t+T)
$$

then

$$
x(t)=a_{0}+\sum a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)
$$

where

$$
\omega_{0}=\frac{2 \pi}{T}
$$

Translation:

- A signal made up of signals which are periodic in time T is also periodic in time T (duh)
- A signal which is periodic in time T is made up of harmonics

Problem: How to go right to left

Add up a bunch of periodic signals and the result is periodic Adjust the amplitudes of the sine \& cosine terms to get different waveforms.

Table of Fourier Transforms (CRC Handbook of Mathematics)

$$
\frac{4}{\pi} \sum_{n \text { odd }}\left(\frac{1}{n}\right) \sin (n t)
$$

$$
\frac{8}{\pi^{2}} \sum_{\mathrm{n} \text { odd }}\left(\frac{1}{n^{2}}\right) \cos (n t)
$$

$$
\frac{2}{\pi} \sum_{n}(-1)^{n-1}\left(\frac{1}{n}\right) \sin (n t)
$$

$$
\frac{1}{\pi}+\frac{1}{2} \sin (x)-\frac{2}{\pi} \sum_{n \text { even }} \frac{1}{n^{2}-1} \cos (n t)
$$

$$
\frac{2}{\pi}-\frac{4}{\pi} \sum_{n \text { even }} \frac{1}{n^{2}-1} \cos (n t)
$$

Example: Square Wave

- $x(t)=0.5+\sum_{\mathrm{n} \text { odd }} \frac{2}{\pi n} \sin (n t)$
- $\mathrm{n}=9$ (red) \& infinity (blue)

Example: Triangle Wave

- $x(t)=\frac{8}{\pi^{2}} \sum_{\mathrm{n} \text { odd }}^{\infty} \frac{1}{n^{2}} \cos (n t)$
- $\mathrm{n}=9$ (red) \& infinity (blue)

Example: 1/2 Wave Rectified Sine Wave

- $x(t)=\frac{1}{\pi}+\frac{1}{2} \sin (x)-\frac{2}{\pi} \sum_{\text {neven }} \frac{1}{n^{2}-1} \cos (n t)$
- $\mathrm{n}=9$ (red) \& infinity (blue)

Problem: How to go from left to right

Solution \#1: Least Squares
Approximate $\mathrm{I}(\mathrm{t})$ as

$$
I(t) \approx a_{0}+a_{1} \cos (10 t)+b_{1} \sin (10 t)+a_{2} \cos (20 t)+b_{2} \sin (20 t)+\ldots
$$

Lease Squares Solution:

$$
I(t) \approx[1 \cos (10 t) \sin (10 t) \cos (20 t) \sin (20 t)]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
b_{1} \\
a_{2} \\
b_{2}
\end{array}\right]
$$

In matrix form

$$
\begin{aligned}
& Y=B A \\
& B^{T} Y=B^{T} B A \\
& A=\left(B^{T} B\right)^{-1} B^{T} Y
\end{aligned}
$$

In Matlab:

```
t = [0:0.0001:1]' * 2*pi/10;
I = 1 .* (t < 0.2);
B = [t.^0, cos(10*t), sin(10*t), cos(20*t), sin(20*t)];
A = inv(B'*B)*B'*I
a0 0.3186
a1 0.2895
b1 0.4513
a2 -0.1208
b2 0.2634
```

$I(t) \approx 0.3186+0.2895 \cos (10 t)-0.4513 \sin (10 t)-0.1208 \cos (20 t)-0.2634 \sin (20 t)$

```
plot(t,I,t,B*A);
```


3-Cycles for $\mathrm{I}(\mathrm{t})$ (blue) and it's approximation using 5 terms (red): $\mathrm{DC}+10 \mathrm{rad} / \mathrm{sec}+20 \mathrm{rad} / \mathrm{sec}$ terms

What this means is

$$
I(t) \approx 0.3186+0.2895 \cos (10 t)-0.4513 \sin (10 t)-0.1208 \cos (20 t)-0.2634 \sin (20 t)
$$

Note: The approximation gets better if you add more terms:

- 20 terms

3-Cycles for I(t) (blue) and it's approximation using 20 harmonics (40 terms + DC - red)

Solution 2: Fourier Transform

Express I(t) as

$$
I(t) \approx a_{0}+a_{10} \cos (10 t)+b_{10} \sin (10 t)+a_{20} \cos (20 t)+b_{20} \sin (20 t)
$$

a0:

$$
\begin{aligned}
& \operatorname{avg}(\cos (a t))=0 \\
& \operatorname{avg}(\sin (a t))=0
\end{aligned}
$$

You can thus determine the DC term (a0) by

$$
a_{0}=a v g(I(t))
$$

a10 and b10, a20 and b20, etc:

$$
\operatorname{avg}(\sin (a t) \cdot \cos (b t))=0
$$

$$
\operatorname{avg}(\sin (a t) \cdot \sin (b t))=\left\{\begin{array}{cc}
\frac{1}{2} & a=b \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\operatorname{avg}(\cos (a t) \cdot \cos (b t))=\left\{\begin{array}{cc}
\frac{1}{2} & a=b \\
0 & \text { otherwise }
\end{array}\right.
$$

Thus

$$
\begin{aligned}
& a_{10}=2 \cdot \operatorname{avg}(\cos (10 t) \cdot I(t)) \\
& b_{10}=2 \cdot \operatorname{avg}(\sin (10 t) \cdot I(t))
\end{aligned}
$$

$$
\begin{aligned}
& a_{20}=2 \cdot \operatorname{avg}(\cos (20 t) \cdot I(t)) \\
& b_{20}=2 \cdot \operatorname{avg}(\sin (20 t) \cdot I(t))
\end{aligned}
$$

In Matlab:

- Same answer as before - just easier

```
>> a0 = mean(I)
    0.3186
>> a10 = 2*mean(cos(10*t) .* I)
    0.2896
>> b10 = 2*mean(sin(10*t) .* I)
    0.4513
>> a20 = 2*mean(cos(20*t) .* I)
    -0.1207
>> b20 = 2*mean(sin(20*t) .* I)
    0.2634
```


Net Result

- Least squares and Fourier transform are the same thing
$\mathrm{I}(\mathrm{t})$ has three terms
- A DC term:

$$
I_{0}(t) \approx 0.3186
$$

- A term at $10 \mathrm{rad} / \mathrm{sec}$

$$
I_{10}(t) \approx 0.2895 \cos (10 t)-0.4513 \sin (10 t)
$$

- A term at $20 \mathrm{rad} / \mathrm{sec}$

$$
I_{20}(t) \approx 0.1208 \cos (20 t)-0.2634 \sin (20 t)
$$

	a 0	a 1	b 1	a 2	b 2
Least Squares Solution	0.3186	0.2895	0.4513	-0.1208	0.2634
Fourier Transform Solution	0.3186	0.2896	0.4513	-0.1207	0.2634

Finding $\mathrm{V}(\mathrm{t})$:

Use superposition

$$
\begin{aligned}
& f(a+b+c)=f(a)+f(b)+f(c) \\
& V \\
& =\left(\frac{s+10}{s^{2}+10 s+10}\right)\left(I_{0}+I_{10}+I_{20}\right) \\
& \\
& \quad=\left(\frac{s+10}{s^{2}+10 s+10}\right) I_{0}+\left(\frac{s+10}{s^{2}+10 s+10}\right) I_{10}+\left(\frac{s+10}{s^{2}+10 s+10}\right) I_{20}
\end{aligned}
$$

Treat this as three separate problems

- Then add the results togetther

	$\mathrm{I}_{0}(\mathrm{t})$	$\mathrm{I}_{10}(\mathrm{t})$	$\mathrm{I}_{20}(\mathrm{t})$
Frequency: s	$s=0$	$\mathrm{s}=\mathrm{j} 10$	$s=j 20$
i(t)	0.3186	$0.2895 \cos (10 t)-0.4513 \sin (10 t)$	$-0.1208 \cos (20 t)-0.2634 \sin (20 t)$
Phasor Form	0.3186	$0.2895+\mathrm{j} 0.4513$	$-0.1201+j 0.2634$
$Z=\left(\frac{s+10}{s^{2}+10 s+10}\right)$	1.000	0.0055 - j0.1050	0.0005 - j0.0510
V Phasor Form	0.3186	0.0490 - j0.0279	0.0135-j0.0060
$\mathrm{v}(\mathrm{t})$	0.3186	$0.0490 \cos (10 t)+0.0279 \sin (10 t)$	$0.0135 \cos (20 t)-0.0060 \sin (20 t)$

Net Result

- Add all of the terms together

$$
\begin{aligned}
v(t)= & v_{0}+v_{10}+v_{20} \\
= & 0.3186 \\
& +0.0490 \cos (10 t)+0.0279 \sin (10 t) \\
& +0.0135 \cos (20 t)-0.0060 \sin (20 t)
\end{aligned}
$$

Matlab Solution:

DC

$$
I_{0}(t)=0.3186
$$

Using phasor analysis

$$
\begin{aligned}
& I=0.3186 \\
& s=0 \\
& V=\left(\frac{s+10}{s^{2}+10 s+10}\right)_{s=0} \cdot I \\
& V=(1) \cdot(0.3184) \\
& v_{0}(t)=0.3184
\end{aligned}
$$

$10 \mathrm{rad} / \mathrm{sec}$

$$
I_{10}(t)=0.2895 \cos (10 t)-0.4513 \sin (10 t)
$$

Using phasor analysis

$$
\begin{aligned}
& I=0.2895+j 0.4513 \\
& s=j 10 \\
& V=\left(\frac{s+10}{s^{2}+10 s+10}\right)_{s=j 10} \cdot I \\
& V=(0.0055-j 0.1050) \cdot(0.2895+j 0.4513) \\
& V=-0.0458-0.0329 \mathrm{i}
\end{aligned}
$$

$$
v_{10}=-0.0458 \cos (10 t)+0.0329 \sin (10 t)
$$

-) MATLAB 7.12 .0 (R2011a)
File Edit Debug Deskop Window Help

: Shortcuts \boxtimes How to Add \boxtimes What's New
$\gg s=j * 10 ;$
$\gg a 10=2^{*} \operatorname{mean}(x \quad * \cos (10 * t)) ;$
$\gg \mathrm{blO}=2^{*}$ mean (x ** $\left.\sin (10 * t)\right) ;$
$\gg \mathrm{IlO}=\mathrm{al0}-\mathrm{j} \mathrm{b} \mathrm{bl0}$

I10=
$0.2895-0.4508 i$
$\gg G 10=(s+10) /\left(s^{\wedge} 2+10^{\star} s+10\right.$

G10 =
$0.0055-0.1050$ i
>> V10 = G10 * I10

V10 =
-0.0457-0.0329i
$f x \gg \mid$

A Start
$20 \mathrm{rad} / \mathrm{sec}$

$$
I_{20}(t)=0.1208 \cos (20 t)-0.2634 \sin (20 t)
$$

Using phasor analysis

$$
\begin{aligned}
& I=0.1208+j 0.2634 \\
& s=j 20 \\
& V=\left(\frac{s+10}{s^{2}+10 s+10}\right)_{s=j 20} \cdot I \\
& V=(0.0005-j 0.0510) \cdot(0.1208+j 0.2634) \\
& V=-0.0135+j 0.0060 \\
& v_{20}=-0.0135 \cos (20 t)-0.0060 \sin (20 t)
\end{aligned}
$$

File Edit Debug Desktop Window Help
- 回区

Shortcuts 【a How to Add © What's New
$\gg S=j * 20 ;$
>> a20 = 2 * mean(x .* $\cos (20 * t)$);
$\gg \mathrm{b} 20=2$ * mean(x . * $\sin \left(20^{\star t} \mathrm{t}\right)$);
$\gg I 20=a 20-j * b 20$
$120=$
-0.1204-0.2631i
$\gg G 20=(s+10) /\left(s^{\wedge} 2+10 * s+10\right.$
G20 =
0.0005 - 0.0510 i
>> V20 = G20 * I20
V20 =
$-0.0135+0.0060 i$
$f x \gg$
4 start

Total Answer:

$$
\begin{aligned}
& v(t)=v_{0}(t)+v_{10}(t)+v_{20}(t) \\
& v(t)=0.3186-0.0458 \cos (10 t)+0.0329 \sin (10 t)-0.0135 \cos (20 t)-0.0060 \sin (20 t)
\end{aligned}
$$

Handout:

Find $y(t)$

$$
\begin{aligned}
& Y=\left(\frac{20}{s+10}\right) X \\
& x(t)=2+3 \cos (4 t)+5 \sin (6 t)
\end{aligned}
$$

Summary:

With

- Phasors
- Superposition, and
- Fourier Transform
you can solve a circuit with any periodic input.

