# ECE 320: Electronics I ECE 111: Intro to ECE Jake Glower 

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

## Electrical and Computer Engineering

Why I like electrical and computer engineering:

- As long as technology advances, we've got jobs
- You're never going to be stuck doing the same job day after day, year after year
- As long as technology advances, anything I design today can be improved tomorrow.


## Example \#1: Motors

1990 Technology
1000 W DC Servo Motor
40 lbs, $\$ 5000,18 " \times 6 "$ dia


2022 Technologyebay 900W Brushless7 Motor
9oz, $\$ 35$ (including controller)


## 1990 Motors (DC) vs. 2022 Motors (AC)

- How Motors Work
- https://www.animations.physics.unsw.edu.au/jw/electricmotors.html


## UNSW <br> PHYSCLIPS <br> $\rightarrow-$

## Electric motors and generators

## An alternator

If we want AC , we don't need recification, so we don't need split rings. (This is good news, because the split rings cause sparks, ozone, radio interference and extra wear. If you want DC , it is often better to use an alternator and rectify with diodes.)

In the next animation, the two brushes contact two continuous rings, so the two external terminals are always connected to the same ends of the coil. The result is the unrectified, sinusoidal emf given by $\mathrm{NBA} \omega \sin \omega \mathrm{t}$, which is shown in the next animation.


## 3-Phase AC Synchronous Motors

- Think Tesla motors or quadcopter motors

Much harder to drive

- Input is a 3-phase AC sine wave
- Frequency is speed
- Lead angle is torque

If you can figure it out

- Size \& weight are reduced
- Efficiency is increased
- You open up a wide range of applications (1hp in a 9oz package)


Q Search for an!
US 3650 4300KV Waterproof
Brushless Motor w/ ESC Combo Set for 1:10 RC Car Truck


## To make an AC motor work...

DC to AC converter

- Acceleration
- Battery (DC) to Motor (AC)
- ECE 320 Electronics I
- ECE 437 Power Electronics
- ECE 438 Electric Drives

AC to DC

- Braking
- Motor (AC) to Battery (DC)
- ECE 320 Electronics I
- ECE 437 Power Electronics
- ECE 438 Electric Drives

The heart of all of this is electronics


## Example \#2: Lighting

As long as technology advances, we've got jobs

1970: Incandescent Light Bulb

- $2 \%$ efficient
- $30 \%$ of the nation's energy went to lighting


## 2022: LED Light Bulb

- Electronic device (diode)
- $36 \%$ efficient
- $80 \%$ efficient is possible in theory
- $5 \%$ of the nation's energy goes to lighting



## Problem with LED Lighting

- Problem: Convert 60 Hz AC to DC


## Current Solution:

- Use electronics to pass current briefly


## Problem

- This results in current spikes
- This creates losses in transformers
- It can also burn out neutral lines

How do you make

- The AC current a nice clean sine wave,
- The DC current a nice clean constant
- At 90-95\% efficiency with electronics?

Whoever figures this out will make billions



## Electronics I

Analysis of circuits with semiconductor elements

- Thermistors
- Diodes
- Transistors
- SCR
- Mosfet
temperature sensitive resistor
valve: allow current to flow in only one direction
diode + current amplifier
voltage controlled valve
voltage controlled resistor

Solution of circuits with nonlinear elements

- Solve N equations for N unknowns with nonlinear elements


## Semiconductors

$\mathrm{Si}, \mathrm{Ge}$ : Column IVA of the periodic table


## Holes and Electrons

Semiconductors have two types of charge carriers: holes and electrons


## Doping

By doping, you can control what type of carriers exist in the semiconductor

- Dope with Boron: Almost all of the charge carriers are holes (p-type)
- Dope with Phosphorus: Almost all of the charge carriers are electrons (n-type)




## Semiconductor Devices

- np: diode (valve)
- npn, pnp: transistor (current amplifier)
- pnpn: semiconductor relay (voltage controlled valve)
- npn + gate: MOSFET (voltage controlled resistor)



## Diodes

- A pn junction makes a diode


## Diodes are valves

- They only allow current to flow one way
- They allow you to find the maximum or minimum of a set of voltges
- With diodes, you can convert AC to DC



## Diodes

With diodes, you can convert current to light

- Light Emitting Diodes
- Much more efficient than incandescent lights

|  | W, Lumens | Price |  | Lm / W | eff |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | new | $@ 1000 \mathrm{hr}$ |  |  |
| Incandescent (c. 2000) | $60 \mathrm{~W}, 300 \mathrm{Lm}$ | - | - | 5.27 | $2.1 \%$ |
| Incancescent: GE 66247 | $43 \mathrm{~W}, 620 \mathrm{Lm}$ | $\$ 1.36$ | $\$ 1.38$ | 14.4 | $5.7 \%$ |
| Halogen: Phillips 60W | $43 \mathrm{~W}, 750 \mathrm{Lm}$ | $\$ 1.46$ | $\$ 1.48$ | 17.4 | $6.9 \%$ |
| CFL: Philips 823031 CFL | $13 \mathrm{~W}, 860 \mathrm{Lm}$ | $\$ 3.50$ | $\$ 0.36$ | 66.2 | $26.4 \%$ |
| LED: Sylvania 74765 | $8.5 \mathrm{~W}, 800 \mathrm{Lm}$ | $\$ 0.83$ | $\$ 0.075$ | 94.1 | $37.5 \%$ |
| Street Lights: |  |  |  |  |  |
| Mercury: GE 175W Street | $175 \mathrm{~W} / 7850 \mathrm{Lm}$ | $\$ 11.29$ |  | 36 | $14 \%$ |
| Sodium: BulBrite | $70 \mathrm{~W} / 6000 \mathrm{Lm}$ | $\$ 8.95$ |  | 86 | $34 \%$ |
| 100W LED | $100 \mathrm{~W} / 9000 \mathrm{Lm}$ | $\$ 8.29$ |  | 90 | $36 \%$ |
| LED Light (theory) |  |  |  |  |  |
| Ideal Black Body | - | - |  | 201 | $80 \%$ |

## Transistors

- npn or pnp

Transistors act as electronic switches

- Allow a small device (microprocessor) turn on and off a motor, power LED, etc
- Allow a small device to drive a motor forwards and backwards (H-bridge)
- Heart of a DC to AC converter (used for driving AC synchronous motors)



## Transistors (cont'd)

Transistors also act as current amplifiers

- Allow you to amplify an analog signal (push-pull amplifier)
- Heart of a stereo
- Covered in ECE 321 Electronics 2

Note that transistors dump voltage (meaning they will get hot when used as an amplifier). The four transistors at the top are likewise connected to a heat-sink.


## MOSFET

- Voltage controlled resistor

Heart of DC to AC converters
Heart of CMOS logic (building block of computers)


## Diode VI Characteristics

A diode is a nonlinear circuit element which acts like a valve:

- The resistance is low when you try to force current to flow from the anode to cathode
- The resistance is high when you try to force current to flow from the cathode to the anode.
The symbol for a diode acts as a reminder of this: it looks like an arrow which points in the direction current can flow


Symbol for a diode: current only flows from anode to cathode

The VI characteristics for a diode are nonlinear

$$
I_{d}=I_{d s s}\left(\exp \left(\frac{V_{d}}{n V_{T}}\right)-1\right) \quad V_{d}=n V_{T} \ln \left(\frac{I_{d}}{I_{d s s}}+1\right)
$$



## What makes electronics so hard?

In circuits, you deal with linear circuit elements

- Resistors, Capacitors, Inductors
- Linear algebra can be used to solve these problems
- N equations for N unknowns

In electronics, you deal with nonlinear circuit elements

- Diodes, Transistors, MOSFETs
- You still have N equations for N unknowns
- But linear algebra no longer works (the equations are nonlinear)


## Nonlinear Elements Behave Weird

Example: Resistors vs. Diodes in Parallel

- Two resistors in parallel share the load equally
- Two diodes in parallel do not: one takes the brunt of the current



## Nonlinear Equations are Hard to Solve

Example: Single diode circuit:

- 2 equations for 2 unknowns:

$$
V_{d}=n V_{T} \ln \left(\frac{I_{d}}{I_{d s s}}+1\right)=0.0377 \ln \left(\frac{I_{d}}{7.69 \cdot 10^{-11}}+1\right)
$$

$$
V_{d}+100 I_{d}=10
$$



## Load Line Analysis:

- Plot Id vs. Vd for both equations
- The solution is where they intersect



## Numerical Solution

- Matlab to the rescue!


## Guess Vd

- Compute Id (diode equation)
- Compute the excess current (voltage nodes)
- Minimuze the error using fminsearch()

```
function [ J ] = Diodel( z )
Vd = z(1);
Idss = 7.69e-11;
nVt = 0.0377;
Id = Idss* exp( Vd/nVt - 1 );
e1 = Id + (Vd - 10)/100;
J = (e1)^2;
end
```

```
-) MATLAB 7.12.0 (R2011a)
File Edit Debug Desktop Window Help
```



```
    Shortcuts (] How to Add © What's New
    >> [z,e] = fminsearch("Diode1', 2)
    Z =
    0.8256
    e =
    7.3099e-009
fx >> 
```


## CircuitLab Solution

- Matlab: $\mathrm{Vd}=0.8256 \mathrm{~V}$



## Example 2: Multi-Diode Circuit



## Numerical Solution

Load Lines won't work

- Need to plot in 6 dimensions

Numerical solution still works:

- Solve 6 equations for 6 unknowns
- fminsearch



## N-equations for $\mathbf{N}$ unknowns

Diode equations (1..3)

$$
\begin{aligned}
& I_{d 1}=I_{d s s}\left(\exp \left(\frac{V_{1}-V_{2}}{n V_{T}}\right)-1\right) \\
& I_{d 2}=I_{d s s}\left(\exp \left(\frac{V_{2}-V_{3}}{n V_{T}}\right)-1\right) \\
& I_{d 3}=I_{d s s}\left(\exp \left(\frac{V_{3}-0}{n V_{T}}\right)-1\right)
\end{aligned}
$$



Voltage Node equations (4..6)

$$
\left(\frac{V_{1}-10}{100}\right)+I_{D 1}+\left(\frac{V_{1}-V_{2}}{200}\right)+\left(\frac{V_{1}-V_{3}}{300}\right)+\left(\frac{V_{1}-0}{400}\right)=0
$$

$$
\left(\frac{V_{2}-V_{1}}{200}\right)-I_{D 1}+I_{D 2}=0
$$

$$
\left(\frac{V_{3}-V_{1}}{300}\right)-I_{D 2}+I_{D 3}=0
$$



## Procedure:

i) Guess the voltages (V1, V2, V3 )
ii) Compute the diode currents:

$$
\begin{aligned}
& I_{d 1}=I_{d s s}\left(\exp \left(\frac{V_{1}-V_{2}}{n V_{T}}\right)-1\right) \\
& I_{d 2}=I_{d s s}\left(\exp \left(\frac{V_{2}-V_{3}}{n V_{T}}\right)-1\right) \\
& I_{d 3}=I_{d s s}\left(\exp \left(\frac{V_{3}-0}{n V_{T}}\right)-1\right)
\end{aligned}
$$

iii) Find the excess current (error) from each node:

$$
\begin{aligned}
& e_{1}=\left(\frac{V_{1}-10}{100}\right)+I_{d 1}+\left(\frac{V_{1}-V_{2}}{200}\right)+\left(\frac{V_{1}-V_{3}}{300}\right)+\left(\frac{V_{1}}{400}\right) \\
& e_{2}=\left(\frac{V_{2}-V_{1}}{200}\right)-I_{d 1}+I_{d 2} \\
& e_{3}=\left(\frac{V_{3}-V_{1}}{300}\right)-I_{d 2}+I_{d 3}
\end{aligned}
$$

iv) Compute the sum square error

$$
\begin{aligned}
& J=e_{1}^{2}+e_{2}^{2}+e_{3}^{2} \\
& \text { function [ J ] = Diode3 ( } \mathrm{z} \text { ) } \\
& \mathrm{V} 1=\mathrm{z}(1) ; \\
& \mathrm{V} 2=\mathrm{z}(2) \text {; } \\
& \mathrm{V} 3=\mathrm{z}(3) \text {; } \\
& \text { Idss }=7.69 \mathrm{e}-11 \text {; } \\
& \text { nVt = 0.0377; } \\
& \text { Id1 }=\text { Idss* } \exp ((V 1-V 2) / n V t-1) \text {; } \\
& \text { Id2 }=\text { Idss* } \exp ((V 2-V 3) / n V t-1) ; \\
& \text { Id3 }=\text { Idss* } \exp ((V 3-0) / n V t-1) \text {; } \\
& \mathrm{e} 1=(\mathrm{V} 1-10) / 100+\mathrm{Id} 1+(\mathrm{V} 1-\mathrm{V} 2) / 200+(\mathrm{V} 1-\mathrm{V} 3) / 300+(\mathrm{V} 1 / 400) ; \\
& e 2=(V 2-V 1) / 200-I d 1+I d 2 ; \\
& e 3=(V 3-V 1) / 300-I d 2+I d 3 ; \\
& J=(e 1)^{\wedge} 2+(e 2)^{\wedge} 2+(e 3)^{\wedge} 2 ; \\
& \text { end }
\end{aligned}
$$

Solving with fminsearch

The solution found by MATLAB is

- $\mathrm{V} 1=2.4370 \mathrm{~V}$
- $\mathrm{V} 2=1.6273 \mathrm{~V}$
- $\mathrm{V} 3=0.8152 \mathrm{~V}$
-) MATLAB 7.12.0 (R2011a)
File Edit Debug Desktop Window Help

Shortcuts $\pi$ How to Add What's New
$\gg$ Diode3 ([3, 2,1$]$ )
ans =
86.7022
$\gg[2, e]=$ fminsearch ('Diode3", $[3,2,1]$ )
Z =
$2.4370 \quad 1.6273 \quad 0.8152$
e =
$9.6536 e-010$
fx >>


## Check with CircuitLab

- Matlab Solution: V1 $=2.4370 \mathrm{~V}, \mathrm{~V} 2=1.6273 \mathrm{~V}, \mathrm{~V} 3=0.8152 \mathrm{~V}$
- Answers are slightly different (slightly different diode model used for a 1 N 4004 )



## Summary

In Electronics, you deal with nonlinear circuit elements

- Thermistors, Diodes, Transistors, MOSFETs, SCR's, etc.


## Voltage Nodes, Current Loops still apply

- Solve N equations for N unknowns
- Only now, they are N nonlinear equations
fminsearch is a very useful tool. With it
- You can solve N equations for N unknowns
- Even when the equations are nonlinear

