EE 206: Solution to Homework \#11

Fourier Transform and Superposition with Phasors
Due Monday, April 15th

Let Vin be a 100 Hz half-rectified sine wave

$$
V_{\text {in }}=\left\{\begin{array}{cc}
10 \sin (628 t) & \sin (628 t)>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

1) Find $y(t)$ by approximating Vin as

$$
V_{i n}=a+b \sin (628 t)
$$

where

- $\mathrm{a}=\operatorname{average}(\mathrm{Vin})$
- $b=1 / 2$ of the peak-to-peak votlage of Vin

The DC voltage is (using Matlab)

```
w = 628;
T = 2*pi/w
    T = 0.01
t = [0:0.0001:1]' * T;
Vin = max(0, 10*sin(200*t));
a = mean(Vin)
    a = 3.1827805
b = (max(Vin) - min(Vin)) / 2
    b = 5.
    Vin}=3.18+5\operatorname{sin}(628t
```


2) Determine the first 3 terms of the Fourier series approximation for Vin

$$
V_{\text {in }} \approx a_{0}+a_{1} \cos (628 t)+b_{1} \sin (628 t)+a_{2} \cos (1256 t)+b_{2} \sin (1256 t)
$$

Using Matlab:

```
a0 = mean(Vin)
    a0=3.1827805
a1 = 2*mean(Vin .* cos(628*t))
    a1 = 0
b1 = 2*mean(Vin .* sin(628*t))
    b1 = 4.9995
a2 = 2*mean(Vin .* cos(1256*t))
    a2 = - 2.1218539
b2 = 2*mean(Vin .* sin(1256*t))
    b2 = 0
```

This means

$$
V_{i n} \approx 3.18+5 \sin (628 t)-2.12 \cos (1256 t)
$$

Vin (blue) and it's Fourier Series apprximation (red)

Note: Using the DC level and the peak-to-peak value (problem \#1) was

- Exact for the DC term, and
- Close for the 1st harmonic (in amplitude) but not phase, and
- Much easier to compute than the Fourier series approximation,

3) For your result of problem \#2, determine $y(t)$

DC: Vin $=3.18$
$\omega=0$
$L \rightarrow j \omega L=0$
$C \rightarrow \frac{1}{j \omega C}=\infty$

By voltage division

$$
\begin{aligned}
& Y=\left(\frac{100}{100+20}\right) \cdot 3.18 \\
& Y=2.65
\end{aligned}
$$

ii) $V_{\text {in }}=5 \sin (628 t)$

$$
\begin{aligned}
& \omega=628 \\
& V_{\text {in }} \rightarrow 0-j 5 \\
& L \rightarrow j \omega L=j 62.8 \\
& C \rightarrow \frac{1}{j \omega C}=-j 159.23
\end{aligned}
$$

Adding R and C in parallel:

$$
100 \|-j 159.23=\left(\frac{1}{100}+\frac{1}{-j 159.23}\right)^{-1}=71.71-j 45.04
$$

By voltage division

$$
Y=\left(\frac{(71.71-j 45.04)}{(71.71-j 45.04)+(20+j 62.8)}\right)(0-j 5)=-3.10-j 3.31
$$

meaning

$$
y(t)=-3.10 \cos (628 t)+3.31 \sin (628 t)
$$

iii) $\quad V_{\text {in }}=-2.12 \cos (1256 t)$

$$
\omega=1256
$$

$$
V_{i n} \rightarrow-2.12+j 0
$$

$$
L \rightarrow j \omega L=j 125.6
$$

$$
C \rightarrow \frac{1}{j \omega C}=-j 79.62
$$

Adding R and C in parallel

$$
100 \|-j 79.62=\left(\frac{1}{100}+\frac{1}{-j 79.62}\right)^{-1}=38.80-j 48.73
$$

From voltage division

$$
\begin{aligned}
& Y=\left(\frac{(38.80-j 48.73)}{(38.80-j 48.73)+(20+j 125.6)}\right)(-2.12+j 0) \\
& Y=0.33+j 1.32
\end{aligned}
$$

meaning

$$
y(t)=0.33 \cos (1256 t)-1.32 \sin (1256 t)
$$

The total input is the sum of all three terms (DC, 628, $1256 \mathrm{rad} / \mathrm{sec}$)
The total output is the sum of all three outputs

$$
y(t)=2.65-3.10 \cos (628 t)+3.31 \sin (628 t)+0.33 \cos (1256 t)-1.32 \sin (1256 t)
$$

In Matlab

```
y1 = 2.65;
y2 = -3.10* cos(628*t) + 3.31*sin(628*t);
y3 = 0.33* cos(1256*t) - 1.32*sin(1256*t);
plot(t*1000,Vin,t*1000,y1+y2+y3);
xlabel('Time (ms)');
ylabel('Volts');
```


Vin (blue) and Y (red)

