EE 206 Test \#2c - Name

Thevenin Equivalents - Max Power Transfer - Superposition - Operational Amplifiers. April 22-23, 2019

1) Determine the Thevenin equivalent for the following circuit.

Vth	Rth
115 V	45.61 Ohms

Rth: Turn off the sources ($\mathrm{V}=0, \mathrm{I}=0$)

$$
\begin{aligned}
& 10 \| 100=9.09 \\
& 9.09+20+30=59.09 \\
& 59.09 \| 200=45.61 \Omega
\end{aligned}
$$

Vth: Switch from Thevenin to Norton and back
2)Determine the Thevenin equivalent for the following circuit

Vth	Rth

Take the Thevenin equivalent at A :

$$
\begin{aligned}
& V_{t h}=\left(\frac{100}{100+10}\right) 100 \mathrm{~V}=90.91 \mathrm{~V} \\
& R_{t h}=10 \| 100=9.01 \Omega
\end{aligned}
$$

Write the voltage node equation at X

$$
\begin{aligned}
& \left(\frac{X-90.91}{29.09}\right)+10\left(\frac{X-90.91}{29.09}\right)+\left(\frac{X}{200}\right)=0 \\
& X=90.90 \mathrm{~V} \text { (which is Vth) }
\end{aligned}
$$

Rth: Apply a 1 V test voltage at A and measure the current

$$
\begin{aligned}
& I=\left(\frac{1 V}{29.09 \Omega}\right)+10\left(\frac{1 V}{29.09 \Omega}\right)+\left(\frac{1 V}{200 \Omega}\right)=383 \mathrm{~mA} \\
& R_{\text {th }}=\frac{1 V}{383 \mathrm{~mA}}=2.61 \Omega
\end{aligned}
$$

3) The voltage and current for a circuit is measured as the resistance changes.

R	12.2 Ohms	69.8 Ohms	326.5 Ohms
V	1.0 V	4.0 V	8.0 V
I	81.8 mA	57.3 mA	24.5 mA

From this data, determine the Thevenin equivalend and the maximum power you can get out of this circuit.

Vth	Rth	R for maximum power transfer	Max power to R
11 V	122 Ohms	122 Ohms	$\mathbf{2 4 8} \mathrm{mW}$

Vth is the X intercept (11V)

$$
R_{t h}=\left(\frac{V_{\text {open }}}{I_{\text {short }}}\right)=\left(\frac{11 \mathrm{~V}}{90 \mathrm{~mA}}\right)=122 \Omega
$$

Max power is when RL = Rth

At this point

$$
\begin{aligned}
& V_{L}=\frac{11 V}{2}=5.5 \mathrm{~V} \\
& P_{L}=\frac{V^{2}}{R}=\frac{5.5^{2}}{122}=248 \mathrm{~mW}
\end{aligned}
$$

4) Find the voltage at Y as a function of A and B

$$
Y=a A+b B+c
$$

a	b	c
0.417	0.278	0.278

Shortcut:

$$
\begin{aligned}
& \left(\frac{X-A}{200}\right)+\left(\frac{X-B}{300}\right)+\left(\frac{X-10}{500}\right)+\left(\frac{X-(-10)}{600}\right)=0 \\
& \left(\frac{1}{200}+\frac{1}{300}+\frac{1}{500}+\frac{1}{600}\right) X=\left(\frac{1}{200}\right) A+\left(\frac{1}{300}\right) B+0.003333 \\
& X=0.417 A+0.278 B+0.278
\end{aligned}
$$

5) Determine the votlages V1, V2, V3, V4. Assume ideal op-amps.

V1	V2	V3	V4	V5

$$
\begin{aligned}
& V_{p}=V_{m} \\
& \qquad \begin{array}{l}
\\
V_{1}=12 \mathrm{~V} \\
V_{3}=V_{4}=9 \mathrm{~V}
\end{array}
\end{aligned}
$$

$$
I_{a}=\frac{12 V}{100 \Omega}=120 \mathrm{~mA}
$$

$$
V_{21}=120 \mathrm{~mA} \cdot 200 \Omega=24 \mathrm{~V}
$$

$$
V_{2}=V_{1}+24 V=36 \mathrm{~V}
$$

$$
I_{b}=\left(\frac{36 V-9 V}{100 \Omega}\right)=270 \mathrm{~mA}
$$

$$
V_{35}=270 \mathrm{~mA} \cdot 300 \Omega=81 \mathrm{~V}
$$

$$
V_{5}=V_{3}-81 V=-72 V
$$

