EE 206: Homework #8

Sinusoidal Source, Complex Numbers, Complex Impedance. Due Monday, March 30th Please make the subject "EE 206 HW#8" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Sine Waves

1) Convert to Vp, Vpp, Vrms

Vp (peak)	Vpp (peak-to-peak)	Vrms
15Vp		
	15Vpp	
		15Vrms
		1541113

2) Solve the following differential equation for y(t)

$$\frac{dy}{dt} + 3y = x$$
$$x(t) = 2\cos(5t)$$

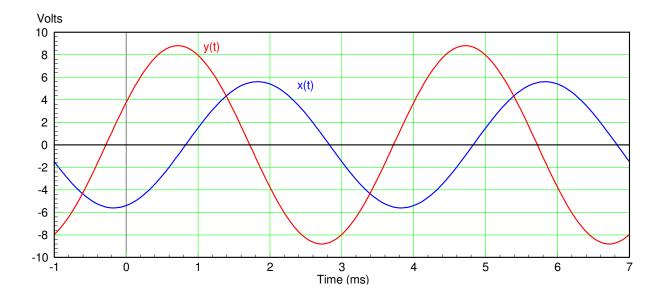
hint: assume y(t) *is in the form of*

 $y(t) = a\cos(5t) + b\sin(5t)$

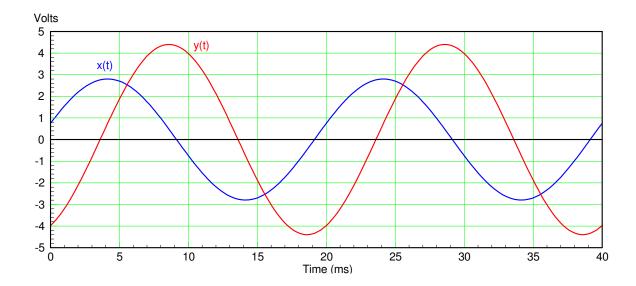
substitute and match coefficients for sine and cosine.

Complex Numbers:

3) Find Y as a complex number


3a)
$$Y = \left(\frac{8+j3}{2+j7}\right) + \left(\frac{4-j3}{8+j5}\right)$$

3b)
$$Y = \left(\frac{100(s+3)}{s(s+5)(s+10)}\right)_{s=j3}$$


3c)
$$Y = \left(\frac{5s^2 + 10s + 20}{s^3 + 6s^2 + 11s + 6}\right)_{s=j4}$$

Phasor Voltages

- 4) For the following waveforms, determine
 - The frequency in rad/sec
 - The phasor representation for X and Y

- 5) Express V in phasor form.
- a) $V = 6\cos(10t) 7\sin(10t)$
- b) $V = 2\cos(20t 30^{\circ}) + 5\cos(20t + 15^{\circ})$
- c) $V = 7\cos(5t 20^{\circ}) + 9\sin(5t)$
- 6) Assume $Y = G^*X$. Determine frequency and the phasor representation for G

