EE 206: Homework \#7 Solution

Op Amp Amplifiers. Due Monday, March 9th

1) Design an op-amp circuit to implement

$$
Y=4 X
$$

Simulate this circuit in PartSim with

- $\mathrm{x}(\mathrm{t})=1 \mathrm{Vp}, 1 \mathrm{kHz}$ sine wave

Is Y double X and 180 degrees out of phase?
There are multiple solutions. This is one:

Yes, the output (black) is $4 x$ the input (blue) and in phase with it.
2) Design an op-amp circuit to implement

$$
Y=-4 X
$$

Simulate this circuit in PartSim with

- $\mathrm{x}(\mathrm{t})=1 \mathrm{~V} \mathrm{p}, 1 \mathrm{kHz}$ sine wave

Is Y double X and 180 degrees out of phase?

Vin (blue) and Vout (black)

Yes, the output is 4 x the input, 180 degrees out of phase from the input
3) Design an op-amp circuit to implement

$$
Y=4 X-10
$$

Rewrite as

$$
Y=4(X-2.5)
$$

Vin (blue) and Vout (black)
Note that

- Vout is $4 x$ larger than Vin (gain is $4 x$)
- In phase with Vin (gain is +)
- Shifted down by 10 V

4) Design an op-amp circuit which outputs

- -10 V when $\mathrm{R}=1000$ Ohms
- +10 V when $\mathrm{R}=1200$ Ohms

Assume a voltage divider with 1000 Ohms
$\mathrm{R}=1000:(\mathrm{Vo}=-10 \mathrm{~V})$

$$
V_{x}=\left(\frac{1000}{1000+1000}\right) 10 \mathrm{~V}=5 \mathrm{~V}
$$

$\mathrm{R}=1200:(\mathrm{Vo}=+10 \mathrm{~V})$

$$
V_{x}=\left(\frac{1200}{1200+1000}\right) 10 \mathrm{~V}=5.455 \mathrm{~V}
$$

The gain we need is

$$
\text { gain }=\left(\frac{\text { change in output }}{\text { change in input }}\right)=\left(\frac{20 \mathrm{~V}}{0.455 \mathrm{~V}}\right)=44.00
$$

The output is 0 V at the midpoint

$$
\text { offset }=\left(\frac{5 V+5.455 \mathrm{~V}}{2}\right)=5.228 \mathrm{~V}
$$

5) Simulate the circuit for problem \#4. Plot the output voltage for $1000<\mathrm{R}<1200$ Ohms

	Vout		
R	Calculated prob 4 - ignoring loading	Calculated including loading	Simulated prob 5
1000	-10.00	-10.244	-10.244
1050	-4.634	-4.890	-4.890
1100	0.476	0.208	0.208
1150	5.349	5.070	5.070
1200	10.000	9.710	9.710

Calculations: Ignoring Loading

$$
\begin{aligned}
& V_{x}=\left(\frac{R}{R+1000}\right) 10 \mathrm{~V} \\
& V_{y}=44\left(V_{x}-5.22727 \mathrm{~V}\right)
\end{aligned}
$$

Calculations: Including Loading

$$
\begin{aligned}
R_{p} & =R \| 450 k \\
V_{x} & =\left(\frac{R_{p}}{R_{p}+1000}\right) 10 V \\
V_{y} & =44\left(V_{x}-5.22727 \mathrm{~V}\right)
\end{aligned}
$$

