EE 206: Homework \#8

Sinusoidal Source, Complex Numbers, Complex Impedance. Due Monday, March 30th
Please make the subject "EE 206 HW\#8" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Sine Waves

1) Convert to Vp, Vpp, Vrms

$\mathrm{V}_{\mathrm{p} \text { (peak) }}$	$\mathrm{V}_{\text {pp }}$ (peak-topeak)	$\mathrm{V}_{\text {rms }}$
${ }^{15 V_{p}}$	$\mathbf{3 0} \mathrm{Vpp}$	10.607 Vrms
$\mathbf{7 . 5} \mathrm{Vp}$	${ }^{15 V_{\text {pp }}}$	5.303 Vrms
$\mathbf{2 1 . 2 1 3 ~ V p}$	$\mathbf{4 2 . 4 2 6} \mathrm{Vpp}$	${ }^{15 \mathrm{Vrms}}$

Note:

$$
\begin{aligned}
& V_{p p}=2 V_{p} \\
& V_{r m s}=\frac{1}{\sqrt{2}} V_{p}
\end{aligned}
$$

2) Solve the following differential equation for $y(t)$

$$
\begin{aligned}
& \frac{d y}{d t}+3 y=x \\
& x(t)=2 \cos (5 t)
\end{aligned}
$$

hint: assume $y(t)$ is in the form of

$$
y(t)=a \cos (5 t)+b \sin (5 t)
$$

substitute and match coefficients for sine and cosine.

Solution:

$$
\frac{d y}{d t}=-5 a \sin (5 t)+5 b \cos (5 t)
$$

Substitute:

$$
\begin{aligned}
& \frac{d y}{d t}+3 y=x \\
& (-5 a \sin (5 t)+5 b \cos (5 t))+3(a \cos (5 t)+b \sin (5 t))=2 \cos (5 x)
\end{aligned}
$$

Group terms

$$
(-5 a+3 b) \sin (5 t)+(5 b+3 a) \cos (5 t)=2 \cos (5 t)
$$

Both sine and cosine have to match

$$
\begin{array}{ll}
-5 a+3 b=0 & \text { sine } \\
5 b+3 a=2 & \text { cosine }
\end{array}
$$

Solving 2 equtions for 2 unknowns gives

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-5 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right]} \\
& \mathrm{a}=00.1764706 \\
& \mathrm{~b}=0.0 .2941176
\end{aligned}
$$

meaning

$$
y(t)=0.1764 \cos (5 t)+0.2941 \sin (5 t)
$$

note: If you don't use complex numbers, you get 2 equations for 2 unknowns (one for sine, one for cosine). Complex numbers reduces this to 1 equation for 1 unknown,

Complex Numbers:

3) Find Y as a complex number

3a) $Y=\left(\frac{8+j 3}{2+j 7}\right)+\left(\frac{4-j 3}{8+j 5}\right)$

$$
Y=0.889-j 1.438
$$

3b) $\quad Y=\left(\frac{100(s+3)}{s(s+5)(s+10)}\right)_{s=j 3}$ $Y=-0.108-j 2.321$

3c) $\quad Y=\left(\frac{5 s^{2}+10 s+20}{s^{3}+6 s^{2}+11 s+6}\right)_{s=j 4}$ $Y=0.541-j 0.565$

Phasor Voltages

4) For the following waveforms, determine

- The frequency in rad/sec
- The phasor representation for X and Y

The period (one cycle) is 4 ms

$$
\begin{aligned}
& f=\frac{1}{T}=\frac{1}{4 m s}=250 \mathrm{~Hz} \\
& \omega=2 \pi f=500 \pi \frac{\mathrm{rad}}{\mathrm{sec}}
\end{aligned}
$$

X:

- The peak is 5.8 V
- The peak is delayed from $\mathrm{t}=0$ by 1.8 ms

$$
\begin{aligned}
& \theta_{x}=-\left(\frac{\text { delay }}{\text { period }}\right) 360^{0}=-\left(\frac{1.8 m \mathrm{~s}}{4 m \mathrm{~s}}\right) 360^{0}=-162^{0} \\
& X=5.8 \angle-162^{0}
\end{aligned}
$$

Y:

- The peak is 8.8 V
- The peak is delayed from $t=0$ by 0.7 ms

$$
\begin{aligned}
& \theta_{y}=-\left(\frac{0.7 m s}{4 m s}\right) 360^{0}=-63^{0} \\
& Y=8.8 \angle-63^{0}
\end{aligned}
$$

5) Express V in phasor form.
a) $\quad V=6 \cos (10 t)-7 \sin (10 t)$

$$
V=6+j 7
$$

real $=$ cosine
-imag $=$ sine
b) $\quad V=2 \cos \left(20 t-30^{\circ}\right)+5 \cos \left(20 t+15^{\circ}\right)$
$=2 \angle-30^{\circ}+5 \angle 15^{0}$
$=6.562+j 0.294$
c) $\quad V=7 \cos \left(5 t-20^{\circ}\right)+9 \sin (5 t)$
$=7 \angle-20^{0}-j \cdot\left(9 \angle 0^{0}\right)$

$$
\begin{aligned}
& \text { real }=\text { cosine, } \quad-j=\text { sine } \\
&=6.578-j 11.394
\end{aligned}
$$

6) Assume $\mathrm{Y}=\mathrm{G}^{*} \mathrm{X}$. Determine frequency and the phasor representation for G

Period $=20 \mathrm{~ms}$

$$
\begin{aligned}
& f=\frac{1}{T}=\frac{1}{20 \mathrm{~ms}}=50 \mathrm{~Hz} \\
& \omega=2 \pi f=100 \pi \frac{\mathrm{rad}}{\mathrm{sec}}
\end{aligned}
$$

Y lags X (negative phase) by 5 ms

$$
\theta=-\left(\frac{5 m s}{20 m s}\right) 360^{0}=-90^{0}
$$

The gain is

$$
|G|=\frac{\text { output }}{\text { input }}=\left(\frac{4.3 V_{p}}{2.8 V_{p}}\right)=1.536
$$

note: the units cancel so you could use rms voltage, Vpp, or Vp. Just be consistent,

So

$$
G=1.536 \angle-90^{\circ}
$$

