EE 206 Test \#2c - Name

Thevenin Equivalents - Max Power Transfer - Superposition - Operational Amplifiers. April 27, 2020
Due Tuesday, April 28th at midnight (solutions posted on Wednesday)
Open book, open notes, internet, calculators, matlab permitted. Individual effort only.
No aid given, received, or observed: (signature) \qquad

1) Determine the Thevenin equivalent for the following circuit.

Vth	Rth
85.714 V	14.286 Ohms

Convert everything to Norton:
(2A, 100 Ohms)
(1A, 50 Ohms)
(3A, 25 Ohms)

Currents in parallel add

$$
(2 \mathrm{~A}+1 \mathrm{~A}+3 \mathrm{~A}=6 \mathrm{~A})
$$

Resistors in parallel change as
100 || 50 || $25=14.286$ Ohms
So
$\mathrm{I}($ Norton $)=6 \mathrm{~A}$,
$R($ Norton $)=14.286$ Ohms
and
$\mathrm{V}($ Thevenin $)=\mathrm{In} * \mathrm{Rn}=85.714 \mathrm{~V}$
2) Determine the Thevenin equivalent for the following circuit

Vth	Rth
-38.462 V	-7.692 Ohms

Vth: Determine X

$$
\begin{aligned}
& -2+\frac{x}{100}+\frac{x-10 x}{50}+\frac{x-75}{25}=0 \\
& x=-38.462 V
\end{aligned}
$$

Rth: Turn off the sources. Apply 1V to Va. determine the current

$$
\begin{aligned}
& I=\left(\frac{1}{25}\right)+\left(\frac{1-10}{50}\right)+\left(\frac{1}{100}\right)=0 \\
& I=-130 \mathrm{~mA} \\
& R_{\text {th }}=\frac{1 V}{-130 \mathrm{~mA}}=-7.692 \Omega
\end{aligned}
$$

3) A resistor (R) is placed across the output of a circuit. The voltage and current through the resistor is then measured:

R	0 Ohms	100 Ohms	200 Ohms	infinity
V	0 V	10 V	20 V	28.5 V
I	73 mA	47.4 mA	21.8 mA	0 mA

From this data, determine the Thevenin equivalend and the maximum power you can get out of this circuit.

Vth	Rth	R for maximum power transfer	Max power to R
$\mathbf{2 8 . 5 V}$	390.4 Ohms	390.4 Ohms	520 mW

$R_{t h}=\frac{28.5 \mathrm{~V}}{73 m A}=390.4 \Omega$
Max power is when Rload $=$ Rth
At this point, Vload $=1 / 2 \mathrm{~V}$ th
$P=\left(\frac{V^{2}}{R}\right)=\left(\frac{14.25^{2}}{390.4 \Omega}\right)=0.520 W$
4) Determine the voltages for the following op-amp circuit. Assume ideal op-amps.

V 1	V 2	V 3	V 4	V 5
10 V	$\mathbf{3 0 V}$	$\mathbf{8 V}$	$\mathbf{- 5 8 V}$	8 V

5) Write the voltage node equations for the following circuit. Assume ideal op-amps.

$$
\begin{aligned}
& V_{3}=V_{4} \\
& \left(\frac{V_{1}-10}{100}\right)+\left(\frac{V_{1}-V_{2}}{200}\right)+\left(\frac{V_{1}-V_{3}}{400}\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{200}\right)+\left(\frac{V_{2}}{300}\right)+\left(\frac{V_{2}-V_{4}}{600}\right)=0 \\
& \left(\frac{V_{3}-V_{1}}{400}\right)+\left(\frac{V_{3}-V_{5}}{500}\right)=0 \\
& \left(\frac{V_{4}-V_{2}}{600}\right)+\left(\frac{V_{4}}{700}\right)=0
\end{aligned}
$$

6) Design a circuit which outputs

- $\mathrm{Y}=+10 \mathrm{~V}$ when $\mathrm{R}=650$ Ohms
- $\mathrm{Y}=-10 \mathrm{~V}$ when $\mathrm{R}=750 \mathrm{Ohms}$
- Y is proportional to R for $650<\mathrm{R}<750 \mathrm{Ohms}$

Assume a 700 Ohm resistor for the divider
At 650 Ohms

- $X=\left(\frac{650}{650+700}\right) 10 \mathrm{~V}=4.815 \mathrm{~V}$
- $\mathrm{Y}=+10 \mathrm{~V}$

At 750 Ohms

- $X=\left(\frac{750}{750+700}\right) 10 \mathrm{~V}=5.172 \mathrm{~V}$
- $\mathrm{Y}=-10 \mathrm{~V}$

As X goes up, Y goes down. Connect to the - input
The gain needed is

$$
\text { gain }=\left(\frac{10-(-10)}{4.815 V-5.172 V}\right)=-55.929
$$

pick the resistors in a 27.964 : 1 ratio
The output is 0 V at midband. make the offset the midband value of X

$$
\text { offset }=\left(\frac{4.815+5.127}{2}\right)=4.994 \mathrm{~V}
$$

