EE 206 Test \#2d - Name

Thevenin Equivalents - Max Power Transfer - Superposition - Operational Amplifiers
Due Thursday, May 7th at midnight
Open book, open notes, internet, calculators, matlab permitted. Individual effort only.
No aid given, received, or observed: (signature) \qquad

1) Determine the Thevenin equivalent for the following circuit.

Vth	Rth
$\mathbf{1 8 9 . 1 3 ~ V ~}$	$\mathbf{3 0 . 4 3 4 7}$ Ohms

Convert everything to a Norton. The net is

$$
\begin{aligned}
& \mathrm{IN}=2 \mathrm{~A}+2.5 \mathrm{~A}+1.714 \mathrm{~A}=6.21428 \mathrm{~A} \\
& \mathrm{RN}=50\|100\| 350=30.4347 \mathrm{Ohms}
\end{aligned}
$$

Convert back to a Thevenin

$$
\text { Vth }=\mathrm{IN} * \mathrm{RN}=189.13 \mathrm{~V}
$$

2)Determine the Thevenin equivalent for the following circuit

Vth	Rth
2.7777 V	361.1 Ohms

Write the node equations

$$
\begin{aligned}
& I_{x}=-\frac{X}{900} \\
& -2 I_{x}+\left(\frac{X-10}{300}\right)+\left(\frac{X}{900}\right)=0 \\
& 2\left(\frac{X}{900}\right)+\left(\frac{X-10}{300}\right)+\left(\frac{X}{900}\right)=0 \\
& X=5.00 V \\
& Y=\left(\frac{500}{500+400}\right) X=2.777 \mathrm{~V}
\end{aligned}
$$

Rth: Turn off the sources. Apply 1V to the output. Measure the current

$$
\begin{aligned}
& I_{x}=\left(\frac{1-X}{400}\right) \\
& -2 I_{x}+\left(\frac{X}{300}\right)+\left(\frac{X-1}{400}\right)=0 \\
& 2\left(\frac{X-1}{400}\right)+\left(\frac{X}{300}\right)+\left(\frac{X-1}{400}\right)=0 \\
& X=0.6923 V \\
& I=\left(\frac{1}{500}\right)+\left(\frac{1-X}{400}\right)=2.769 m A \quad \mathrm{R}=1 / \mathrm{I}=361.1 \mathrm{Ohms}
\end{aligned}
$$

3) A resistor (R) is placed across the output of a circuit. The voltage and current through the resistor is then measured:

R	34.7 Ohms	88.9 Ohms	184.6 Ohms	400 Ohms
V	1 V	2 V	3 V	4 V
I	28.8 mA	22.5 mA	16.3 mA	10.0 mA

From this data, determine the Thevenin equivalend and the maximum power you can get out of this circuit.

Vth	Rth	R for maximum power transfer	Max power to R
5.60 V	160 Ohms	160 Ohms	49 mW

4) Determine the voltages for the following op-amp circuit. Assume ideal op-amps.

V 1	V 2	V 3	V 4
$\mathbf{1 0} \mathrm{~V}$	$\mathbf{3 1} \mathrm{~V}$	$\mathbf{8} \mathrm{~V}$	$\mathbf{- 3 2 . 8 3} \mathrm{~V}$

5) Write the voltage node equations for the following circuit. Assume ideal op-amps.

- $V_{1}=10$
- $V_{3}=V_{5}$
- $\left(\frac{V_{1}}{100}\right)+\left(\frac{V_{1}-V_{2}}{200}\right)+\left(\frac{V_{1}-V_{3}}{400}\right)=0$
- $\left(\frac{V_{3}-V_{1}}{400}\right)+\left(\frac{V_{3}-V_{2}}{300}\right)+\left(\frac{V_{3}-V_{4}}{500}\right)=0$
- $\left(\frac{V_{5}}{100}\right)+\left(\frac{V_{5}-V_{4}}{600}\right)=0$

6) Design a circuit which outputs

- $\mathrm{Y}=0 \mathrm{~V}$ when $\mathrm{R}=300$ Ohms
- $\mathrm{Y}=+10 \mathrm{~V}$ when $\mathrm{R}=330$ Ohms
- Y is proportional to R for $300<\mathrm{R}<330 \mathrm{Ohms}$

At 300 Ohms ($\mathrm{Y}=0 \mathrm{~V}$)

$$
X=\left(\frac{300}{300+300}\right) 10 V=5 V
$$

At 330 Ohms ($\mathrm{Y}=10 \mathrm{~V}$)

$$
\begin{aligned}
& X=\left(\frac{330}{330+300}\right) 10 V=5.2381 V \\
& \text { gain }=\left(\frac{10-0}{5.2381-5}\right)=42.00
\end{aligned}
$$

