EE 206: Lab \#8

Phasors and RC Circuits

Build the following 4-stage RC filter

1) Set the input to 5 Vp 100 Hz sine wave

Measure the signal at V1 .. V4
Express V1 .. V4 as a phasor assuming

$$
\mathrm{V} 0=5+\mathrm{j} 0
$$

V0	V1	V2	V3	V4
$5+\mathrm{j} 0$				

2) Set the input to 5 Vp 200 Hz sine wave

Measure the signal at V1 .. V4
Express V1 .. V4 as a phasor assuming

$$
\mathrm{V} 0=5+\mathrm{j} 0
$$

V0	V1	V2	V3	V4
$5+\mathrm{j} 0$				

Sample Calculations: To measure the gain and phase shift at 100 Hz , display both Vin and Vout on the oscilloscope. For example, if the traces look like the following:

Sample Voltages: Vin (blue) and Vout (red)

Define the input (blue) curve to be 0 degree reference. Since it's peak is 3.0 V

$$
V_{\text {blue }} \equiv 3 \angle 0^{0}
$$

The output (red) is 2.2 V .

$$
V_{r e d}=2.2 \angle \theta
$$

Phase Calculations:

One cycle is 360 degrees. The output (red line) is delayed from the input by

$$
\theta=\left(\frac{1 \mathrm{~ms} \text { delay }}{10 \mathrm{~ms} \text { period }}\right) \cdot 360^{0}=-36^{0}
$$

(negative phase is a delay, positive phase is a time advance)

So, the phasor representation for the red curve is

$$
V_{\text {red }}=2.2 \angle-36^{0}
$$

