Resistors in Series and Parallel

Some circuits you can simplify by combining resistors

Resistors in Series:

Problem: Find the net resistance of this circuit:

Using Kirchoff's voltage law:

$$
\begin{aligned}
& \mathrm{Vin}=\mathrm{V} 1+\mathrm{V} 2+\mathrm{V} 3 \\
& V_{\text {in }}=I \cdot R_{1}+I \cdot R_{2}+I \cdot R_{3} \\
& V_{\text {in }}=I \cdot\left(R_{1}+R_{2}+R_{3}\right) \\
& V_{\text {in }}=I \cdot R
\end{aligned}
$$

Resistors in series add

Problem 1: Let R1 = 100 Ohms, R2 = 200 Ohms, R3 $=300$ Ohms. Find the total resistance .
Answer: Resistors in series add:

$$
\begin{aligned}
& R_{\text {net }}=R_{1}+R_{2}+R_{3} \\
& R_{n e t}=100 \Omega+200 \Omega+300 \Omega \\
& R_{\text {net }}=600 \Omega
\end{aligned}
$$

Problem 2: Let R1 = 100 Ohms, R2 = 200 Ohms, and the total resistance be 1000 Ohms. Find R3.
Answer: Resistors in series add:

$$
\begin{aligned}
& R_{n e t}=R_{1}+R_{2}+R_{3} \\
& 1000 \Omega=100 \Omega+200 \Omega+R_{3} \\
& R_{3}=700 \Omega
\end{aligned}
$$

Resistors in Parallel:

Find the net resistance:

Using Kirchoff's current law:

$$
\begin{aligned}
& \text { Iin }=\mathrm{I} 1+\mathrm{I} 2+\mathrm{I} 3 \\
& I_{\text {in }}=\left(\frac{V_{i n}}{R_{1}}\right)+\left(\frac{V_{i n}}{R_{2}}\right)+\left(\frac{V_{\text {in }}}{R_{3}}\right) \\
& I_{\text {in }}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) V_{\text {in }} \\
& V_{\text {in }}=I_{\text {in }} \cdot\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1} \\
& V_{\text {in }}=I_{\text {in }} \cdot R
\end{aligned}
$$

Resistors in parallel combine as the sum of the inverses, inverted:

$$
R=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots\right)^{-1}
$$

Problem 3: Let R1 = 100 Ohms, R2 $=200$ Ohms, R3 $=300$ Ohms. Find the total resistance.
Solution: Resistors in parallal add as the sum of the inverses inverted.

$$
\begin{aligned}
& R_{\text {net }}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1} \\
& R_{n e t}=\left(\frac{1}{100}+\frac{1}{200}+\frac{1}{300}\right)^{-1} \\
& R_{\text {net }}=54.54 \Omega
\end{aligned}
$$

Problem 4: Let R2 $=200$ Ohms, R3 $=300$ Ohms, and the total resistance be 100 Ohms. Find R1.
Solution:

$$
\begin{aligned}
& R_{n e t}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1} \\
& 100 \Omega=\left(\frac{1}{R_{1}}+\frac{1}{200}+\frac{1}{300}\right)^{-1} \\
& \frac{1}{100}=\frac{1}{R_{1}}+\frac{1}{200}+\frac{1}{30 C} \\
& R_{1}=600 \Omega
\end{aligned}
$$

With this, you can simplify some circuits. For example, find the resistance seen by the voltage source:

The 40 Ohm and 25 Ohm are in series. Add these to 65 Ohms.

65 Ohms and 15 Ohms are in parallel. Add these to gether

$$
R=\left(\frac{1}{15}+\frac{1}{65}\right)^{-1}=12.19 \Omega
$$

12.19 and 30 ohms are in series. Add thest together tp get $42 / 19$ Ohms

42.19 is in parallel with 5 Ohms. Add these to gether to get

$$
R=\left(\frac{1}{5}+\frac{1}{42.19}\right)^{-1}=4.47 \Omega
$$

This is in series with 20 Ohms.

The resistance seen by the 12 V source is $\mathbf{2 4 . 4 7}$ Ohms

CircuitLab (www.CircuitLab.com)

You can check your answer in CircuitLab. This is a free (!) circuit simulator for NDSU students

- Sign up for an account using your NDSU.edu email address
- You cans save your circuits for future reference
- Please keep your circuit names clean and avoid profanity.

Step 1: Add the components

- Drag and drop components
- R rotates the component
- Double click allows you to change the value

Step 2: Connect the components using drag and drop. Note: you should see a dot when wires are connected. No dot means there's no connection.

Step 3: Click Run, DC Bias

- Add labels for the voltages you want to look at
- Add Expression and click on a voltage (V0) to see that, click on a wire to see the current

Click Run DC Solver to get answers

From $V=I R$, you can compute the resistance seen by the 12 V source

$$
\begin{aligned}
& R=\frac{V}{I} \\
& R=\frac{12 V}{0.4904 A}=24.4698 \Omega
\end{aligned}
$$

which matches our computed resistance of 24.47 Ohms.

