Voltage and Current Division

Voltage Division

Problem: Generate a voltage that is $\mathrm{X} \%$ of the input voltage.
Solution: Use two resistors in series:

Voltage Divider: Two resistors reduce the input voltage

$$
\begin{aligned}
& I=\frac{V_{\text {in }}}{R_{1}+R_{2}} \\
& V_{\text {out }}=I \cdot R_{1} \\
& V_{\text {out }}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) V_{\text {in }}
\end{aligned}
$$

Example: Reduce the voltage from a car battery $(13.2 \mathrm{~V})$ to 5 V so that a microcontroller can read the voltage.
Solution: Let

$$
\left(\frac{R_{1}}{R_{1}+R_{2}}\right)=\left(\frac{5 V}{13.2}\right)=0.379
$$

To limit the current to a safe level, let

$$
\mathrm{R} 2=1 \mathrm{M} \mathrm{Ohm}
$$

Then

$$
\mathrm{R} 1=610 \mathrm{k} \text { Ohms }
$$

Note that the voltage is 5.00 V provided there is no current drawn at Vout. This circuit works provided that the total resistance of R1 in parallel with the load is 610 k Ohms.

Potentiometers:

A potentiometer is a resistor where a third terminal (termed the wiper) picks off the voltage part way across the resistor. For example, in the picture shown below a resistor consisting of a long wire wound around a ceramic torous connects the two outer leads. A wiper connects a center tap part way along the length of the potentiometer.

Potentiometer: A long resistive wire connects the two end terminals. A center tap lets you output the voltage or resistance in-between the end terminals. from www.westfloridacomponents.com

The symbol for a potentiometer reflects how it is built:

Symbol for a potentiometer. A resistor with an arrow indicating the center tap
There are two main uses for potentiometers:
Potentiometers Used for Gain Adjustment: By connecting one end of the potentiometer to a signal and the other end to ground the wiper picks off anywhere from 0% to 100% of the input signal.

Note that you do need to take into account the effect of loading the pot. For example, assume you connect a $10 \mathrm{k} \Omega$ load to a 1 k potentiometer. The circuit for this is as follows:

Loading effects cause the input / output relationship to be nonlinear
If the load is infinite, the voltage at the wiper is by voltage division:

$$
\begin{aligned}
& V_{\text {out }}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) V_{\text {in }}: \\
& V_{\text {out }}=\left(\frac{a R}{a R+(1-a) R}\right) V_{\text {in }} \\
& V_{\text {out }}=a \cdot V_{\text {in }}
\end{aligned}
$$

The output voltage is a fraction of the input as determined by the wiper setting, ' a '.

If the load is 10 k , then R 1 is $\mathrm{aR} \| 10 \mathrm{k}$

$$
\begin{aligned}
& V_{\text {out }}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) V_{\text {in }} \\
& R_{1}=a R \| R_{L}=\left(\frac{a R \cdot R_{L}}{a R+R_{L}}\right)
\end{aligned}
$$

You can plot this in MATLAB with the following code:

```
    R = 1000;
    RL = 10000;
    a = [0:0.01:1]'
    Vin = 1;
    R1 = a*R * RL ./ (a*R + RL);
    R2 = (1-a)*R;
    Vout = R1 ./ (R1 + R2);
    plot(a,a,a,Vout);
    xlabel('Pot Setting (a)');
    ylabel('Gain');
```


Gain of a potentiometer with a load of (infinite, 10x, 3x, 1x) the resistance of the potentiometer
Note that the with a load placed at the wiper, the gain still goes from 0 to 1 regardless of the load. As long as the load is $3 x$ the resistance of the potentiometer, the gain is almost liner.

Potentiometers Used as a Variable Resistor

A second use of potentiometers is to provide an adjustable resistor in a circuit. By shorting the wiper to one end, the resistance between the ends is adjustable from 0% to 100% of the total resistance.

Note that it is not necessary to short the wiper to one end, but this is customary. When a potentiometer fails, usually the wiper breaks. With the above configuration, the resistance becomes 100% when the wiper breaks. If you just connect one end to the wiper (without connecting to the other end), the resistance becomes infinite when the wiper breaks. As the design engineer, it's your choice as to what you want to happen upon failure.

Current Division

Problem: Find the currents I1 and I2

Solution: Find the voltage, V1

$$
\begin{aligned}
& R=R_{1} \| R_{2}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1} \\
& V=I R=100 m A \cdot\left(\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}\right)
\end{aligned}
$$

The current, I1, is

$$
I_{1}=\frac{V_{1}}{R_{1}}=\left(\frac{\frac{1}{R_{1}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}\right) \cdot 100 \mathrm{~mA}
$$

and

$$
I_{2}=\frac{V_{1}}{R_{2}}=\left(\frac{\frac{1}{R_{2}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}\right) \cdot 100 m A
$$

Current Division: The current through a resistor is

$$
I_{x}=\left(\frac{\text { The admittance }(1 / \mathrm{R}) \text { of what you're measuring }}{\text { The total }(\text { sum }) \text { admttance }}\right) \cdot \text { Current In }
$$

For this problem

$$
\begin{aligned}
& I_{1}=\left(\frac{\frac{1}{100}}{\frac{1}{100}+\frac{1}{200}}\right) \cdot 100 \mathrm{~mA}=66.7 \mathrm{~mA} \\
& I_{2}=\left(\frac{\frac{1}{200}}{\frac{1}{100}+\frac{1}{200}}\right) \cdot 100 \mathrm{~mA}=33.3 \mathrm{~mA}
\end{aligned}
$$

If you have more than one resistor, change it so that you have only two resistors

From before

$$
\begin{aligned}
& I_{1}=\left(\frac{\frac{1}{100}}{\frac{1}{100}+\frac{1}{200}+\frac{1}{300}}\right) \cdot 100 \mathrm{~mA}=54.5 \mathrm{~mA} \\
& I_{2}=\left(\frac{\frac{1}{200}}{\frac{1}{100}+\frac{1}{200}+\frac{1}{300}}\right) \cdot 100 \mathrm{~mA}=27.3 \mathrm{~mA} \\
& I_{3}=\left(\frac{\frac{1}{300}}{\frac{1}{100}+\frac{1}{200}+\frac{1}{300}}\right) \cdot 100 \mathrm{~mA}=18.2 \mathrm{~mA}
\end{aligned}
$$

Note that

$$
\mathrm{I} 1+\mathrm{I} 2+\mathrm{I} 3=100 \mathrm{~mA}
$$

Current Out $=$ Current In

