More Thevenin and Norton Equivalents

Sometimes, the Thevenin resistance isn't obvious. In that case, you can apply a test voltage and calculate the resulting current draw. Then from $\mathrm{V}=\mathrm{IR}$, you can calulate the Thevenin resistance.

Example 1: Determine the Thevenin equivalent for the following circuit

Vth: Determine the open-circuit voltage. Write the voltage node equation at V1

$$
\begin{aligned}
& I_{b}=\left(\frac{5-V_{1}}{3 k}\right) \\
& \left(\frac{V_{1}-5}{3 k}\right)-100 I_{b}+\left(\frac{V_{1}}{5 k}\right)=0
\end{aligned}
$$

Substitute and solve

$$
V_{1}=\left(\frac{\left(\frac{101}{3 k}\right)}{\left(\frac{101}{3 k}\right)+\left(\frac{1}{5 k}\right)}\right) 5 V=4.9705 V
$$

This is Vth.

To find Rth,

- Turn off the voltage source
- Measure the resistance

This isn't obvious. In that case, apply a 1 V test voltage and compute the current draw

For this circuit

$$
\begin{aligned}
& I_{b}=\left(\frac{0 V-1 V}{3 k}\right) \\
& I_{\text {in }}=\left(\frac{1 V-0 V}{3 k}\right)-100 I_{b}+\left(\frac{1 V}{5 k}\right) \\
& I_{\text {in }}=33.87 m A
\end{aligned}
$$

So

$$
R_{t h}=\frac{V_{i n}}{I_{i n}}=\frac{1 V}{33.87 \mathrm{~mA}}=29.53 \Omega
$$

The Thevenin equivalent is thus:

Example 2: Determine the Thevenin equivalent for the following circuit (this models an op-amp with a gain of -10: a circuit we'll cover later)

Example 2: Find the Thevenin equivalent of this active amplifier
Open-Circuit Voltage: Write the voltage node equations

$$
\begin{aligned}
& V_{2}=-1000 V_{1} \\
& \left(\frac{V_{1}-1}{1 k}\right)+\left(\frac{V_{1}-V_{3}}{10 k}\right)=0 \\
& \left(\frac{V_{3}-V_{1}}{10 k}\right)+\left(\frac{V_{3}-V_{2}}{100}\right)=0
\end{aligned}
$$

Solve (time passes....)

The net results is the open-circuit voltage is -9.8901 V . This is Vth.

Thevenin Resistance: Turn off voltage sources and measure the resistance. Since this isn't obvious, apply a 1V test voltage and compute the current the circuit draws:

To find the Thevenin resistance, apply a 1 V test votlage and compure the current, lin.

$$
\begin{aligned}
& V_{1}=\left(\frac{1 k}{1 k+10 k}\right) \cdot 1 V=90.91 \mathrm{mV} \\
& V_{2}=-1000 V_{1}=-90.91 \mathrm{~V} \\
& I_{i n}=\left(\frac{1 V}{11 k}\right)+\left(\frac{1 V-(-90.91 \mathrm{~V})}{100}\right)=919.2 \mathrm{~mA} \\
& R_{\text {in }}=\frac{V_{i n}}{I_{i n}}=\frac{1 V}{919.2 \mathrm{~mA}}=1.088 \Omega
\end{aligned}
$$

So, this circuit has the Thevenin equivalent of:

Thevenin equivalent of example \#2.

