Superposition

Concept:

A circuit composed of resistors, inductors, capacitors, voltage sources, current sources, and dependent sources is a linear system. Linear systems have the property

$$
f(a+b)=f(a)+f(b)
$$

This, in a nut-shell, is superposition. If you have multiple inputs to a circuit, you can analyze the circuit with one element at a time. The answer will be the sum of the two.

Example 1:

Find the voltages V0 .. V4

Soution: Use superposition. First, assume the voltages are $\{10 \mathrm{~V}, 0 \mathrm{~V}\}$. Using voltage division, the voltages are:

	V 0	V 1	V 2	V 3	V 4
$\mathrm{~V} 0=10 \mathrm{~V}$	10.00 V	8.04 V	5.71 V	3.09 V	0.00 V
$\mathrm{~V} 4=0 \mathrm{~V}$					

Next, assume the voltagtes are $\{0 \mathrm{~V}, 10 \mathrm{~V}\}$. Using voltage division, the voltages are:

	V 0	V 1	V 2	V 3	V 4
$\mathrm{~V} 0=0 \mathrm{~V}$	0.00 V	0.386 V	1.24 V	2.69 V	5.00 V
$\mathrm{~V} 4=5 \mathrm{~V}$					

By superposition, if both voltages are turned on, the voltages will be the sum of these two cases:

	V 0	V 1	V 2	V 3	V 4
$\mathrm{~V} 0=10 \mathrm{~V}$	10.00 V	8.42 V	6.95 V	5.78 V	5.00 V
$\mathrm{~V} 4=5 \mathrm{~V}$					

Example 2: R-2R Ladder.

Determine Y as a funciton of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D

By superposition, we know that

$$
Y=a A+b B+c C+d D
$$

where $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ are constants. To determine the constants, turn off all the inputs but one and set the other to 1 V .
Case 1: $\mathrm{A}=1, \mathrm{~B}=\mathrm{C}=\mathrm{D}=0$.
Take the Thevenin equivalent of the circuit looking left at x. All you see is $2 R \| 2 R=R$ to ground.
Repeat at y . All you see is $2 \mathrm{R} \| 2 \mathrm{R}=\mathrm{R}$ to ground.
Repeat at z . All you see is $2 \mathrm{R} \| 2 \mathrm{R}=\mathrm{R}$ to ground.
By voltage division, $\mathrm{Y}=1 / 2$ volt.

$$
\mathrm{a}=1 / 2
$$

Case 2: $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=\mathrm{D}=0$.

At w looking left, all you see is $2 R \| 2 R=R$
At x looking left, all you see is $2 R \| 2 R=R$
At y looking left, all you get

- Rth $=2 R \| 2 R=R$
- V th $=1 / 2 \mathrm{~V}$

At z looking left, you get

- Rth $=2 \mathrm{R} \| 2 \mathrm{R}=\mathrm{R}$
- Vth $=1 / 2 * 1 / 2=1 / 4$
$b=1 / 4$

Case 3: $\mathrm{A}=\mathrm{B}=\mathrm{D}=0 . \quad \mathrm{C}=1$.

Taking the Thevenin equivalents looking left, you wind up with

$$
\mathrm{Y}=1 / 8 \mathrm{~V} \quad(\mathrm{c}=1 / 8)
$$

The net result is

$$
Y=1 / 2 A+1 / 4 B+1 / 8 C+1 / 16 D
$$

Example 3: Weighted Average

Case 1: Design a circuit so that Y is the average of $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$

$$
Y=\left(\frac{A+B+C}{3}\right)
$$

Solution:

Writing the voltage node equation at Y :

$$
\begin{aligned}
& \left(\frac{Y-A}{R}\right)+\left(\frac{Y-B}{R}\right)+\left(\frac{Y-C}{R}\right)=0 \\
& 3 Y=A+B+C \\
& Y=\left(\frac{A+B+C}{3}\right)
\end{aligned}
$$

Case 2: Design a circuit so that Y is the weighted average:

$$
Y=\left(\frac{2 A+B+C}{4}\right)
$$

Solution: Add A twice. This is equivalent to reducing R by 2 :

Case 3: Design a circuit to implement

$$
Y=\left(\frac{a A+b B+c C}{a+b+c}\right)
$$

Solution:

Level Shifting

Assume A is an analog signal in the range of $-10 \mathrm{~V} . .+10 \mathrm{~V}$. Design a circuit to shift this voltage to the range of $0 . .5 \mathrm{~V}$.
Solution: Y is related to A as

$$
Y=\frac{1}{4} A+2.5
$$

Assume you have a +5 V power supply and a 0 V power supply. This can be rewritten as

$$
Y=\frac{1}{4} A+\frac{1}{2}(5 V)+\frac{1}{4}(0 V)
$$

or

$$
Y=\left(\frac{1 \cdot(A)+2(\cdot 5 V)+1 \cdot(0 V)}{4}\right)
$$

A circuit which shifts a -10 V to +10 V signal (A) to a $0 . .5 \mathrm{~V}$ signal (Y) is thus

