Operational Amplifiers

An operational amplifier is a 2 -input device with

$$
V_{o} \approx k\left(V^{+}-V^{-}\right)
$$

where k is a large number. For short, the following symbol is used for an differential amplifier:

Symbol for an operational amplifier (op-amp)

Operational Amplifier Characteristics

Pin Layout for two common op-amps: LM741 and LM833

	LM741	LM833	Ideal
Input Resistance	2 M Ohms	-	infinite
Input Offset Current	20 nA	25 nA	0
Output Resistance	75 Ohms	-	
Output Short Circuit Current:	25 mA	-	0
Input Offset Voltage	1.0 mV	0.3 mV	0
Operating Voltage	$+/-12 \mathrm{~V} . .+/-22 \mathrm{~V}$	$+/-2.5 \mathrm{~V} . .+/-15 \mathrm{~V}$	any
Diffential Mode Gain	200,000	100 dB	infinite
Common Mode Rejectin Ratio	90 dB	100 dB	common mode gain $=0$
Slew Rate	$0.5 \mathrm{~V} / \mathrm{us}$	$7 \mathrm{~V} / \mathrm{us}$	infinite
Gain Bandwidth Product	1.5 MHz	15 MHz	infinite
Price (qty 100)	$\$ 0.35$	$\$ 0.52$	-

Input resistance / Input Offset Current: The input of the op-amp does draw some current. If you keep the currents involved much larger (meaning at 1 V , resistors are less than 50 M Ohm), you can ignore the current into V+ and V-.

Input Offset Voltage: If you have a lot of gain, there may be a slight DC offset in the ouput. You can model this as a 1 mV (or 0.3 mV) offset at the input, $\mathrm{V}+$ or V -.

Operating Voltage: A LM741 needs at least $+/-12 \mathrm{~V}$ to power it.
Differential Mode Gain: The gain from (V+-V-) to the output
Common Mode Rejection Ratio: The gain from ($\mathrm{V}++\mathrm{V}-$) is this much less than the differential mode gain. Note that

$$
d B=20 \cdot \log _{10}(\text { gain })
$$

Slew Rate: The ouput can't change from -10 V to +10 V in zero time. It can only ramp up this fast.
Gain Bandwidth Product $=1.5 \mathrm{MHz}$:

- If you want a gain of one, the bandwidth is 1.5 MHz
- If you want a gain of 10 , the bandwidth is 150 kHz .
- etc.

For a 741 , for example, the output of an op-amp is

$$
V_{o}=k_{1}\left(V^{+}-V^{-}\right)+k_{2}\left(V^{+}+V^{-}\right)
$$

where $\mathrm{k} 1=200,000$ (the differential gain) and $\mathrm{k} 2=6.325(90 \mathrm{~dB}$ smaller than the differential gain)

Operational Amplifier Circuit Analysis

Problem: Write the voltage node equations for the following circuit. Assume (a) a LM741 op amp. (b) an ideal op-amp.

Figure 2: Find Vo for this op-amp circuit

(a) 741 Op Amp Analysis:

First, replace the op-amp with a model taking into account the input, output resistance and gains:

Solution 1: Replace the op-amp with its circuit model (LM741 used here)
Since $\mathrm{Vp}=\mathrm{V}+=0 \mathrm{~V}$, this simplifies a little: the gain of the op-amp works out to $-199,994 \mathrm{Vm}$.
Now, write the voltage node equations:
$@ \mathrm{Vm}:\left(\frac{V_{m}-1 V}{1 k}\right)+\left(\frac{V_{m}}{2 M}\right)+\left(\frac{V_{m}-V_{x}}{10 k+75}\right)=0$
@Vx: $\quad V_{x}=-199,994 V_{m}$

Solving

$$
\begin{aligned}
& \left(\frac{1}{1 k}+\frac{1}{2 M}+\frac{1+199,994}{10,075}\right) V_{m}=\left(\frac{1 V}{1 k}\right) \\
& V_{m}=50.4 \mu V \\
& V_{x}=-199,994 V_{m}=-10.07 V \\
& V_{o}=\left(\frac{75}{10,000+75}\right) V_{m}+\left(\frac{10,000}{10,000+75}\right) V_{x} \\
& V_{o}=-9.9994 V
\end{aligned}
$$

(b) Ideal Op Amp:

Note that many of the terms don't affect the output all that much:

- 2 M Ohms in parallel with 1 k is about 1 k
- $1+199,994$ is about 199,994 .
- 50.4 uV is about zero.

If you approximate these terms, you're essentially using an ideal-op amp. The circuit simplifies to:

Solution 2: Replace the op-amp with an ideal op-amp

Now the voltage node equations are:
@Vm: $\left(\frac{V_{m}-1 V}{1 k}\right)+\left(\frac{V_{m}-V_{o}}{10 k}\right)=0$
$@ \mathrm{Vo}: \quad V_{o}=k\left(V_{p}-V_{m}\right)$
Note that:

- You can't write a voltage node equation at Vo: the op-amp supplies whatever current it takes to hold the output voltage. Since you don't know what that current is, you can't sum the currents to zero.
- For an ideal op-amp, if the gain, k , is infinity and the output is finite, then $V_{p}=V_{m}$.

Solving then results in

$$
V_{o}=-10.00 \mathrm{~V}
$$

which is very close to what you get for a $741 \mathrm{op}-\mathrm{amp}$.

Notes:

- When analyzing an op-amp circuit, you almost have to use voltage nodes.
- If assuming an ideal op-amp, the voltage node equation at Vo is

$$
V_{p}=V_{m}
$$

Example 2: Assume ideal op-amps

- Write the votlage node equations for the following op-amp circuit
- Find the voltages

Example 2: Find the voltages

There are four unkown voltage nodes. We need to write 4 equations to solve for 4 unknows. Start with the easy ones. For ideal op-amps with negative feedback

$$
V_{p}=V_{m}
$$

meaning

$$
\begin{align*}
& V_{1}=2 V \tag{1}\\
& V_{3}=2 V \tag{2}
\end{align*}
$$

Now write two more equations. It's tempting, but you can't write the node equations at V2 or V4

- Equation (1) and (2) are the node equations at the outputs - you've already done that.
- You don't know the current from the op-amp - meaning you can't sum the currents to zero.

Instead, find two mode nodes where you can sum the currents to zero: nodes V1 and V3.

$$
\begin{array}{ll}
\left(\frac{V_{1}-3}{100 k}\right)+\left(\frac{V_{1}-V_{2}}{100 k}\right)=0 & \text { (3) } * 100 \mathrm{k} \text { to clear the denominator } \\
\left(\frac{V_{3}-V_{2}}{100 k}\right)+\left(\frac{V_{3}-1}{20 k}\right)+\left(\frac{V_{3}-V_{4}}{100 k}\right)=0 & \text { (4) } * 100 \mathrm{k} \text { to clear the denominator }
\end{array}
$$

Solving

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
2 & -1 & 0 & 0 \\
0 & -1 & 7 & -1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
3 \\
5
\end{array}\right]
$$

In Matlab:
$\gg A=[1,0,0,0 ; 0,0,1,0 ; 2,-1,0,0 ; 0,-1,7,-1]$

This checks with the Circuitlab solution

Circuitlab results for example 2: The votlages match our computations.

Example 3: Assume ideal op-amps. Find the node voltages.

There are four unknown votlages, so we need to write 4 equations to solve for 4 unknowns.
Start with the easy ones: at the output of each op-amp, $\mathrm{V}+=\mathrm{V}-$

$$
\begin{align*}
& V_{1}=2 \tag{1}\\
& V_{3}=3 \tag{2}
\end{align*}
$$

Sum the currents to zero at nodes 1 and 3 for the remaining two eqations

$$
\begin{align*}
& \left(\frac{V_{1}}{1 k}\right)+\left(\frac{V_{1}-V_{2}}{2 k}\right)=0 \tag{3}\\
& \left(\frac{V_{3}-V_{2}}{3 k}\right)+\left(\frac{V_{3}-V_{4}}{4 k}\right)=0
\end{align*}
$$

In matrix form:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\left(\frac{1}{1 k}+\frac{1}{2 k}\right) & \left(\frac{-1}{2 k}\right) & 0 & 0 \\
0 & \left(\frac{-1}{3 k}\right) & \left(\frac{1}{3 k}+\frac{1}{4 k}\right) & \left(\frac{-1}{4 k}\right)
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right]=\left[\begin{array}{c}
2 \\
3 \\
0 \\
0
\end{array}\right]
$$

Solving:

```
>>A=[1,0,0,0; 0,0,1,0;1/1000+1/2000, -1/2000, 0, 0; 0,-1/3000, 1/3000+1/4000,-1/4000]
            1.0000 rrrer
>> B = [2;3;0;0];
>> V = inv(A)*B
\begin{tabular}{lr} 
V1 & 2.0000 \\
V2 & 6.0000 \\
V3 & 3.0000 \\
V4 & -1.0000
\end{tabular}
```

Again, this matches with what Circuitlab gives

Circuitlab Solution: The node votlages match our calculations.

