# **Operational Amplifiers**

An operational amplifier is a 2-input device with

 $V_o \approx k(V^+ - V^-)$ 

where k is a large number. For short, the following symbol is used for an differential amplifier:



Symbol for an operational amplifier (op-amp)

### **Operational Amplifier Characteristics**



#### Pin Layout for two common op-amps: LM741 and LM833

|                               | LM741           | LM833            | Ideal                  |
|-------------------------------|-----------------|------------------|------------------------|
| Input Resistance              | 2M Ohms         | -                | infinite               |
| Input Offset Current          | 20nA            | 25nA             | 0                      |
| Output Resistance             | 75 Ohms         | -                |                        |
| Output Short Circuit Current: | 25mA            | -                | 0                      |
| Input Offset Voltage          | 1.0mV           | 0.3mV            | 0                      |
| Operating Voltage             | +/- 12V +/- 22V | +/- 2.5V +/- 15V | any                    |
| Diffential Mode Gain          | 200,000         | 100dB            | infinite               |
| Common Mode Rejectin Ratio    | 90dB            | 100dB            | common mode gain = $0$ |
| Slew Rate                     | 0.5V/us         | 7V/us            | infinite               |
| Gain Bandwidth Product        | 1.5MHz          | 15MHz            | infinite               |
| Price (qty 100)               | \$0.35          | \$0.52           | -                      |

## NDSU

Input resistance / Input Offset Current: The input of the op-amp does draw some current. If you keep the currents involved much larger (meaning at 1V, resistors are less than 50M Ohm), you can ignore the current into V+ and V-.

Input Offset Voltage: If you have a lot of gain, there may be a slight DC offset in the ouput. You can model this as a 1mV (or 0.3mV) offset at the input, V+ or V-.

Operating Voltage: A LM741 needs at least +/-12V to power it.

Differential Mode Gain: The gain from (V+ - V-) to the output

Common Mode Rejection Ratio: The gain from (V + + V -) is this much less than the differential mode gain. Note that

$$dB = 20 \cdot \log_{10}(gain)$$

Slew Rate: The ouput can't change from -10V to +10V in zero time. It can only ramp up this fast.

Gain Bandwidth Product = 1.5MHz:

- If you want a gain of one, the bandwidth is 1.5MHz
- If you want a gain of 10, the bandwidth is 150kHz.
- etc.

For a 741, for example, the output of an op-amp is

 $V_o = k_1(V^+ - V^-) + k_2(V^+ + V^-)$ 

where  $k_1 = 200,000$  (the differential gain) and  $k_2 = 6.325$  (90dB smaller than the differential gain)

#### **Operational Amplifier Circuit Analysis**

Problem: Write the voltage node equations for the following circuit. Assume (a) a LM741 op amp. (b) an ideal op-amp.



Figure 2: Find Vo for this op-amp circuit

### (a) 741 Op Amp Analysis:

First, replace the op-amp with a model taking into account the input, output resistance and gains:



Solution 1: Replace the op-amp with its circuit model (LM741 used here)

Since Vp = V + = 0V, this simplifies a little: the gain of the op-amp works out to -199,994 Vm. Now, write the voltage node equations:

Solving

$$\left(\frac{1}{1k} + \frac{1}{2M} + \frac{1+199,994}{10,075}\right) V_m = \left(\frac{1V}{1k}\right)$$
$$V_m = 50.4\mu V$$
$$V_x = -199,994V_m = -10.07V$$
$$V_o = \left(\frac{75}{10,000+75}\right) V_m + \left(\frac{10,000}{10,000+75}\right) V_x$$
$$V_o = -9.9994V$$

#### (b) Ideal Op Amp:

Note that many of the terms don't affect the output all that much:

- 2M Ohms in parallel with 1k is about 1k
- 1 + 199,994 is about 199,994.
- 50.4uV is about zero.

If you approximate these terms, you're essentially using an ideal-op amp. The circuit simplifies to:



Solution 2: Replace the op-amp with an ideal op-amp

Now the voltage node equations are:

$$@Vm: \left(\frac{V_m - 1V}{1k}\right) + \left(\frac{V_m - V_o}{10k}\right) = 0$$

@Vo:  $V_o = k(V_p - V_m)$ 

Note that:

- You can't write a voltage node equation at Vo: the op-amp supplies whatever current it takes to hold the output voltage. Since you don't know what that current is, you can't sum the currents to zero.
- For an ideal op-amp, if the gain, k, is infinity and the output is finite, then  $V_p = V_m$ .

Solving then results in

$$V_o = -10.00V$$

which is very close to what you get for a 741 op-amp.

Notes:

- When analyzing an op-amp circuit, you almost have to use voltage nodes.
- If assuming an ideal op-amp, the voltage node equation at Vo is

 $V_p = V_m$ 

Example 2: Assume ideal op-amps

- Write the votlage node equations for the following op-amp circuit
- Find the voltages



Example 2: Find the voltages

There are four unkown voltage nodes. We need to write 4 equations to solve for 4 unknows. Start with the easy ones. For ideal op-amps with negative feedback

$$V_p = V_m$$

meaning

$$V_1 = 2V \tag{1}$$
$$V_3 = 2V \tag{2}$$

Now write two more equations. It's tempting, but you can't write the node equations at V2 or V4

- Equation (1) and (2) are the node equations at the outputs you've already done that.
- You don't know the current from the op-amp meaning you can't sum the currents to zero.

Instead, find two mode nodes where you can sum the currents to zero: nodes V1 and V3.

$$\left(\frac{V_1-3}{100k}\right) + \left(\frac{V_1-V_2}{100k}\right) = 0$$
(3) \* 100k to clear the denominator
$$\left(\frac{V_3-V_2}{100k}\right) + \left(\frac{V_3-1}{20k}\right) + \left(\frac{V_3-V_4}{100k}\right) = 0$$
(4) \* 100k to clear the denominator

Solving

| 1 0 0 0   | $V_1$                            | 2 |
|-----------|----------------------------------|---|
| 0 0 1 0   | $V_2$                            | 2 |
| 2 -1 0 0  | $V_3$                            | 3 |
| 0 -1 7 -1 | $\left\lfloor V_4 \right\rfloor$ | 5 |

In Matlab:

| >>                   | А | =                | [1,0,0,0           | ; | 0,0,             | 1,0               | ; | 2,-1,0,0 | ; | 0,-1,7,-1] |
|----------------------|---|------------------|--------------------|---|------------------|-------------------|---|----------|---|------------|
|                      |   | 1<br>0<br>2<br>0 | 0<br>0<br>-1<br>-1 | ( | 0<br>1<br>0<br>7 | 0<br>0<br>0<br>-1 |   |          |   |            |
| >>                   | В | =                | [2;2;3;5]          |   |                  |                   |   |          |   |            |
|                      |   | 2<br>2<br>3<br>5 |                    |   |                  |                   |   |          |   |            |
| >>                   | V | =                | inv(A)*B           |   |                  |                   |   |          |   |            |
| V1<br>V2<br>V3<br>V4 |   |                  | 2<br>1<br>2<br>8   |   |                  |                   |   |          |   |            |

This checks with the Circuitlab solution



| ∨(∨1) | 2.000 V 🧪 🔞 |  |
|-------|-------------|--|
| ∨(∨2) | 1.000 V 📝 🔞 |  |
| ∨(∨3) | 2.000 V 📝 🔞 |  |
| ∨(∨4) | 8.000 V 💉 😢 |  |
|       |             |  |

Circuitlab results for example 2: The votlages match our computations.

#### Example 3: Assume ideal op-amps. Find the node voltages.



There are four unknown votlages, so we need to write 4 equations to solve for 4 unknowns. Start with the easy ones: at the output of each op-amp, V + = V-

$$V_1 = 2 \tag{1}$$

$$V_3 = 3 \tag{2}$$

Sum the currents to zero at nodes 1 and 3 for the remaining two eqations

$$\left(\frac{V_1}{1k}\right) + \left(\frac{V_1 - V_2}{2k}\right) = 0 \tag{3}$$

$$\left(\frac{V_3 - V_2}{3k}\right) + \left(\frac{V_3 - V_4}{4k}\right) = 0 \tag{4}$$

In matrix form:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \left(\frac{1}{1k} + \frac{1}{2k}\right) & \left(\frac{-1}{2k}\right) & 0 & 0 \\ 0 & \left(\frac{-1}{3k}\right) & \left(\frac{1}{3k} + \frac{1}{4k}\right) & \left(\frac{-1}{4k}\right) \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix}$$

Solving:

>> A = [1,0,0,0 ; 0,0,1,0 ; 1/1000+1/2000, -1/2000, 0, 0 ; 0,-1/3000, 1/3000+1/4000,-1/4000]

|                      | 1.0000<br>0<br>0.0015<br>0            | 0<br>0<br>-0.0005<br>-0.0003 | 0<br>1.0000<br>0<br>0.0006 | 0<br>0<br>-0.0003 |
|----------------------|---------------------------------------|------------------------------|----------------------------|-------------------|
| >><br>>>             | B = [2;3;<br>V = inv(A                | 0;0];<br>.)*B                |                            |                   |
| V1<br>V2<br>V3<br>V4 | 2.0000<br>6.0000<br>3.0000<br>-1.0000 |                              |                            |                   |

## Again, this matches with what Circuitlab gives



| ∨(∨2) 6.000 ∨   | 1 | 8 |
|-----------------|---|---|
|                 |   |   |
| ∨(∨3) 3.000 ∨   | 1 | 8 |
| V(V4) -999.9 mV | 1 | 8 |

Circuitlab Solution: The node votlages match our calculations.