Instrumentation Amplifiers

Instrumentation Amplifiers

The transfer function for an instrumentation amplfier is

Case 1: Voltage Amplifation

Design a circuit to convert a 0..5V signal in to a +/- 10V signal.

- X = 0..5V analog
- Y = -10 .. + 10V analog
- Y = 4X 10

Solution: Rewrite this as

Y = 4(X - 2.5)

Level Shifter: 0..5V signal is amplified to -10V .. +10V

NDSU

Case 2: V = f(R)

Assume R varies from 2000 Ohms to 2200 Ohms. Design a circuit which outputs

- -10V when R = 2000 Ohms
- +10V when R = 2200 Ohms

Solution: Convert R to a voltage using a voltage divider. Assume a 2100 Ohm resistor

R = 2000 Ohms:

$$V_x = \left(\frac{2000}{2000 + 2100}\right) 10V = 4.878V$$

Y = -10V

R = 2200 Ohms

$$V_x = \left(\frac{2200}{2200 + 2100}\right) 10V = 5.116V$$
$$Y = +10V$$

The gain you need is

$$gain = \left(\frac{\text{change in output}}{\text{change in input}}\right) = \left(\frac{10V - (-10V)}{5.116V - 4.878V}\right)$$

$$gain = 83.95$$

The output should be 0V (midband) when the input is midband

$$V_b = \left(\frac{4.878V + 5.116V}{2}\right) = 4.997V$$

Instrumentation Amplifier: Y goes from -10V to +10V as R goes from 2000 to 2200 Ohms

In CircuitLab you can check by doing a DC Sweep on R2

This results in the output voltage shown below. Note that the range isn't *quite* 0V to 10V. This is due to the loading of R5 and R6 on V1 (the larger R5 and R6 are, the less the loading).

Output voltage as R sweeps from 2000 to 2200 Ohms

Case 3: RTD Temperature Sensor.

The temperature-resistance relationship of an RTD is

 $R = 1000 \cdot (1 + 0.0043T) \Omega$

where T is the temperature in degrees celsius. Design a circuit which outputs

- 0V at 0C
- +10V at +100C

Solution: Assume a voltage divider with a 1000 Ohm resistor.

At 0C

- R = 1000 Ohms
- Va = 5.00 V
- Vy = 0.00V

At +100C

- R = 1430 Ohms
- Va = 5.885V
- Vy = +10.00V

As the input voltage increases, the output voltage increases. Connect the voltage divider to A. The output is 0V when Va = 5.00V. Make B = 5.00V

The gain needed is

$$gain = \left(\frac{\text{change in output}}{\text{change in input}}\right) = \left(\frac{10V-0V}{5.885V-5.00V}\right) = 11.30$$

Checking the results in Matlab:

NDSU

```
T = [0:0.1:100]';
R = 1000 * (1 + 0.0043*T);
Va = R ./ (1000 + R) * 10;
Y = 11.3 * (Va - 5.00);
plot(T,Y);
```

xlabel('Temperature (C)');
ylabel('Y (Volts)');

Checking the results in CircuitLab, note that

- The output voltage is slightly off
- This is due to the loading of R5 and R6 on V1

A DC Sweep us run with R2 varying frmo 1000 to 1430 Ohms ($0\mathrm{C}<\mathrm{T}<100\mathrm{C}$)

Resulting Output Voltage as R varies from 1000 to 1430 Ohms

Case 4: Thermistor Temperature Sensor.

The temperature-resistance relationship of a thermistor is

$$R \approx 1000 \exp\left(\frac{3905}{T+273} - \frac{3905}{298}\right) \Omega$$

where T is the temperature in degrees celsius. Design a circuit which outputs

- 0V at 0C
- +10V at +40C

Solution: Assume a voltage divider with a 1000 Ohm resistor.

At 0C

- R = 3320.125 Ohms
- Vb = 7.6853 V
- Vy = 0.00V

At +40C

- R = 533.664 Ohms
- Vb = 3.4797V
- Vy = +10.00V

As the input voltage decreases, the output voltage increases. Connect the voltage divider to B.

The output is 0V when Va = 7.6853V. Make A = 7.6853V

The gain needed is

$$gain = \left(\frac{10V - 0V}{3.4797V - 7.6853V}\right) = -2.3778$$

The minus sign is taken care of by connecting to the minus input (B).

The gain comes from the resistor ratio

Let R1 = 100k, R2 = 237.78k

Note: You can check your results in Matlab.

```
T = [0:0.1:40]';
R = 1000 * exp( 3905 ./(T + 273) - 3905/298 );
Va = R ./ (1000 + R) * 10;
Y = 2.3778 * (7.6853 - Va);
plot(T,Y);
xlabel('Temperature (C)');
ylabel('Y (Volts)');
```


Instrumentation Amplifier to output 0V @ 0C, 10V @ 40C

Output Voltages vs. Temperature

Note that the output goes from 0V to 10V as temperature goes from 0C to +40C as desired.

In CircuitLab, check

- The left endpoint (0C or R2 = 3320.125 Ohms)
- The midpoint (20C or R2 = 1250.593 Ohms)
- The right endpoint (40C or R2 = 533.664 Ohms)

V(V3) 5.410 V 2 2 V(V4) 5.410 V 2 8 V(V5) 42.32 mV 2 8	V(V1)	7.668 ∨	1	0
V(V4) 5.410 V 2 3 V(V5) 42.32 mV 2 3	∨(∨3)	5.410 V	0	0
V(V5) 42.32 mV 📝 😢	∨(∨4)	5.410 V	0	0
	∨(∨5)	42.32 mV	1	0

Output (V5) at 0C = 0.04232V (0V ideally)

∨(∨1)	5.556 V	1	8
∨(∨3)	5.410 V	1	0
∨(∨4)	5.410 V	1	0
∨(∨5)	5.064 V	1	0

Output (V5) at +20C = 5.064V (5.000V ideally)

∨(∨1)	3.486 ∨	1	8
∨(∨3)	5.410 V	1	8
∨(∨4)	5.410 V	1	8
∨(∨5)	9.985 ∨	P	Θ

Output (V5) at +40C = 9.985V (10.000V ideally)