Phasor Impedances

Objective:

- Represent the impedance of a resistor, inductor, and capacitor as a complex number (termed its phasor impedance)
- Determine the impedance of RLC networks.

Resistors

From before, a current (or voltage)

$$
i(t)=a \cos (\omega t)+b \sin (\omega t)
$$

can be written in phasor form as

$$
I=a-j b
$$

The voltage produced by a current flowing through a resistor is

$$
v(t)=i(t) \cdot R
$$

or in phasor form

$$
V=I R
$$

The complex impedance of a resistor is R

For example: The current flowing through an 833 Ohm resistor is shown below: current is in phase with voltage for resistors.

Voltage and current are in phase for resistors

Capacitors

The current through a capacitor is

$$
i(t)=C \frac{d v(t)}{d t}
$$

If $v(t)$ is a sinusoid:

$$
\begin{aligned}
& v(t)=a \cos (\omega t)+b \sin (\omega t) \\
& V=a-j b
\end{aligned}
$$

then the current will be

$$
\begin{aligned}
& i(t)=C \cdot \frac{d}{d t}(a \cos (\omega t)+b \sin (\omega t)) \\
& \quad=C \cdot(-a \omega \sin (\omega t))+b \omega \cos (\omega t)) \\
& I=C \cdot(j a \omega+b \omega)=j \omega C \cdot(a-j b)
\end{aligned}
$$

The impedance is then the ratio:

$$
\begin{aligned}
& Z=\frac{V}{I} \\
& Z=\left(\frac{a-j b}{j \omega C \cdot(q-j b)}\right)
\end{aligned}
$$

Doing some algebra

$$
Z=\left(\frac{1}{j \omega C}\right)
$$

The complex impedance of a capacitor is $\frac{1}{j \omega C}$

For example, the current flowing through a capacitor with an impedance of -j833 Ohms is shown below: note that there is a 90 degree phase shift $(1 / \mathrm{j})$ and the current leads voltage for capacitors

Current leads voltage for capacitors

Inductors:

The VI relationship of an inductor is

$$
v(t)=L \frac{d i(t)}{d t}
$$

Assume current is

$$
\begin{aligned}
& i(t)=a \cos (\omega t)+b \sin (\omega t) \\
& I=a-j b
\end{aligned}
$$

The voltage is then

$$
\begin{aligned}
& v(t)=L \cdot \frac{d}{d t}(a \cos (\omega t)+b \sin (\omega t)) \\
& v(t)=L \cdot(-a \omega \sin (\omega t)+b \omega \cos (\omega t)) \\
& V=L \omega \cdot(j a+b)=j \omega L \cdot(a-j b)
\end{aligned}
$$

The impedance of an inductor is then

$$
\begin{aligned}
& Z=\frac{V}{I} \\
& Z=\left(\frac{j \omega L \cdot(a-j b)}{a-j b}\right)
\end{aligned}
$$

$$
Z=j \omega L
$$

The complex impedance of an inductor is $\mathbf{j w L}$
For example, the voltage and currents through an inductor with an impedance of j 833 Ohms is shown below. Note that there is a 90 degree phase shift (j) and that voltage leads current for inductors.

Voltage leads current for inductors

ELI the ICE man: One way to remember the current - voltage relationship for capacitors and inductors is the phrase
ELI the ICE man

ELI: Voltage (E) leads current for inductors (L)
ICE: Current (I) leads voltage (E) for capacitors

Example: Determine the impedance of a

- 100 Ohm resistor, a
- 100 mH inductor, and a
- 1 uF capacitor
at $\{0,100 \mathrm{~Hz}$, and 10 kHz$\}$

Solution: Note that

$$
\omega=2 \pi f
$$

$\mathrm{f}(\mathrm{Hz})$	0 Hz	100 Hz	10 kHz
$\mathrm{w}(\mathrm{rad} / \mathrm{sec})$	0	628.3	62,831
$\mathrm{R}=100 \mathrm{Ohms}$	$\mathrm{Z}=100$	$\mathrm{Z}=100$	$\mathrm{Z}=100$
$\mathrm{~L}=100 \mathrm{mH}$	$\mathrm{Z}=0$	$\mathrm{Z}=\mathrm{j} 62.83$	$\mathrm{Z}=\mathrm{j} 6283.1$
$\mathrm{C}=1 \mathrm{uF}$	$\mathrm{Z}=$ infinity	$\mathrm{Z}=-\mathrm{j} 1591$	$\mathrm{Z}=-\mathrm{j} 15.91$

- Resistors don't change with freqency:
- Inductors are short circuits at DC (0 Ohms) and have a +j impedance
- Capacitors are open circuits at DC (infinity Ohms) and have a - j impedance.

RLC Networks:

If you have a circuit with resistors, inductors, and capacitors, the impedance will be a complex number. The same rules that apply to resitors (parallel, series) apply when using complex impedances.

Example 1: Determine the complex impdeance Zab

Solution: Going right to left:
200 and -j250 are in parallel:

$$
200 \|-\mathrm{j} 250=\left(\frac{1}{200}+\frac{1}{-j 250}\right)^{-1}=121.95-j 97.56
$$

This is in series with $(50+\mathrm{j} 40)$ Ohms

$$
(121.95-j 97.56)+(50+j 40)=171.95-j 57.56
$$

which is in parallel with - j 150 and 100 Ohms

$$
(171.95-j 57.56)|\mid(-j 150) \|(100)=50.30-j 27.80
$$

which is in series with $20+\mathrm{j} 30$ Ohms

$$
(50.30-j 27.80)+(20+j 30)=70.30+j 2.20
$$

answer:

$$
Z_{a b}=70.30+j 2.20 \text { Ohms }
$$

note: it really helps to have a calculator that does complex numbers. I recommend an HP35s or the Free42 app on a cell phone

Example 2: Determine the complex impedance Zab

Solution: Go inside out

$$
\begin{aligned}
& (40-j 70)|\mid(30+j 50)=62.45+j 16.42 \\
& (62.45+j 16.42)+20=82.45+j 16.42 \\
& (82.45+j 16.42) \|(60-j 70)=48.56-j 15.34
\end{aligned}
$$

answer:

$$
Z_{a b}=48.56-j 15.34 \mathrm{Ohms}
$$

