Thevenin Equivalents with Phasors

	VI relationship	Phasor Notation
Voltage	$v(t)=a \cos (\omega t)+b \sin (\omega t)$	$V=a-j b$
Resistor	$v=i R$	$Z_{R}=R$
Inductor	$v=L \frac{d i}{d t}$	$Z_{L}=j \omega L$
Capacitor	$i=C \frac{d v}{d t}$	$Z_{C}=\frac{1}{j \omega C}$

Thevenin equivalents also work with phasors - only you get complex numbers for the Thevenin voltage and Thevenin resistance.

Example 1: Determine

- The Thevenin equivalent for the following circuit,
- ZL for max power transfer, and
- The maximum power to a load

Solution: Combine the 20 Ohms and -j30 Ohms in parallel:

$$
20 \|-j 30=(13.846-j 9.231) \Omega
$$

The Thevenin voltage by voltage division is

$$
V_{t h}=\left(\frac{(13.846-j 9.231)}{(13.846-j 9.231)+(6+j 10)}\right) 100=67.836-j 49.142
$$

The Thevenin resistance is (turn off the voltage source and measure the resistance looking in:

$$
\begin{aligned}
& Z_{t h}=(-j 30)\|(20)\|(6+j 10) \\
& Z_{t h}=8.968+j 3.838
\end{aligned}
$$

So the Thevenin equivalent is

Thevenin Equivalent: Same as before only now with complex numbers

AC Power

At DC, power is

$$
P=V I=\frac{V^{2}}{R}=I^{2} R
$$

For AC, it's slightly different. Recall that AC voltages can be written three differnt ways
V = peak voltage
$\mathrm{Vpp}=$ peak-to-peak voltage
Vrms $=$ rms voltage (DC equivalent voltage)

Power for AC deals with complex numbers for V, I, and Z . The general equation for AC power is

$$
P=V_{r m s} \cdot I_{r m s}^{*}=\frac{1}{2} V_{p} \cdot I_{p}
$$

P has two parts: real and complex

- The real part of P is the work done (or heat produced),
- The complex part of P is the energy that bounces back and forth (usually between inductors and capacitors).

Substituting

$$
V=I \cdot Z
$$

you get

$$
\begin{aligned}
& P=Z \cdot I_{r m s} \cdot I_{r m s}^{*}=\frac{1}{2} \cdot Z \cdot I_{p} \cdot I_{p}^{*} \\
& P=\left|I_{r m s}\right|^{2} \cdot Z=\frac{1}{2}\left|I_{p}\right|^{2} \cdot Z
\end{aligned}
$$

AC Power		
$P=V_{r m s} \cdot I_{r m s}^{*}$	$P=\left\|I_{r m s}\right\|^{2} \cdot Z$	$P=\frac{\left\|V_{r m s}\right\|^{2}}{Z^{*}}$

The power to the load is the real part of P. Just like the DC case, this is a maximum when

$$
\operatorname{real}\left(Z_{L}\right)=\operatorname{real}\left(Z_{t h}\right)
$$

The complex part of the impedance reduces the current to the load. The maximum current is when the complex parts cancel, i.e.

$$
\operatorname{imag}\left(Z_{L}\right)=-\operatorname{imag}\left(Z_{L}\right)
$$

The net result is

The maximum power to the load is when $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{th}}$ *

Example: Determine

- The load, ZL, which maximimizes the power to the load, and
- The power to the load (real and complex power)

Solution: The load should be the complex conjugate of Zth

$$
\begin{aligned}
& Z_{L}=(8.968+j 3.838)^{*} \\
& Z_{L}=8.968-j 3.838
\end{aligned}
$$

To find RL and jXL, add the inverses (since they are in parallel):

$$
\frac{1}{Z_{L}}=\frac{1}{R_{L}}+\frac{1}{-j X_{L}}
$$

$$
R_{L}=10.611 \Omega
$$

$$
-j X_{L}=-j 24.793 \Omega
$$

The power to the load is then

$$
\begin{aligned}
& V_{L}=\left(\frac{(8.968-j 3.838)}{(8.969-j 3.838)+(8.968+j 3.838)}\right) \cdot(67.836-j 49.142) \\
& V_{L}=23.402-j 39.087
\end{aligned}
$$

Assuming units are rms:

$$
\begin{aligned}
& P=\frac{\left|V_{r m s}\right|^{2}}{Z^{*}}=\frac{|23.402-j 39.087|}{(8.969-j 3.838)^{*}} \\
&=\frac{(45.557)^{2}}{8.969+j 3.838} \\
&=4.293-j 1.837 \quad \text { Watts }
\end{aligned}
$$

Example 2: "Capacitors add Voltage"
A saying you'll hear in the power industry is "capacitors add voltage". Utilities often add capacitors at the end of a transmission line to bring the voltage up. This works due to the load that utilities see are often inductive (all the motors attached to the line add +jX reactance). This is similar to the previous example.

By adding capacitors to the load,

- The +jX reactance is reduced, which
- Increases the current to the load, which
- Increases the voltage at the load.

This only works up to a point: once you have cancelled all of the inductance $(+\mathrm{jX})$, adding more capacitors will actually redice the voltage.

For example, determine the voltage of the following circuit vs. -jX:

In Matlab:

```
X = logspace(0,3,100)';
Vth = 67.836 - j*49.142
Zth = 8.968 + j*3.838;
VL = 0*X;
for i=1:length(X)
    ZL = 1 / ( 1/8.968 + 1/(-j*X(i)));
        VL(i) = abs( ( ZL / (ZL + Zth) ) * Vth );
        end
    plot(X, VL);
```


Example 3: Source Transformations

Source transformations also work with complex numbers. For example, determine the Thevenin equivalent for the following circuit:

Step 1: Convert to a Norton equivalent

$$
\begin{aligned}
& Z_{N}=Z_{t h}=5+j 10 \\
& I_{N}=\frac{V_{t h}}{Z_{t h}}=4-j 8
\end{aligned}
$$

Combine impedances in parallel

$$
(5+j 10)\|(50)\|(-j 60)=7.883+j 8.321
$$

Convert to Thevenin

$$
\begin{aligned}
& Z_{t h}=Z_{N}=7.883+j 8.321 \\
& V_{t h}=I_{N} \cdot Z_{N}=(4-j 8) \cdot(7.883+j 8.321) \\
& V_{t h}=98.102-j 29.781
\end{aligned}
$$

Now find the Thevenin equivalent.
By voltage division:

$$
\begin{aligned}
& V_{t h}=\left(\frac{(38.40-j 28.80)}{(38.40-j 28.80)+(7.883-j 29.781)+(2+j 15)}\right)(98.102-j 29.781) \\
& V_{t h}=68.701-j 74.405
\end{aligned}
$$

Zth: Turn off the source and measure the impedance

$$
\begin{aligned}
& Z_{t h}=((7.83-j 29.781)+(2+j 15))\left\|^{\prime}(60)\right\|(-j 80) \\
& Z_{t h}=20.077+j 14.931
\end{aligned}
$$

Zth
$20.077+\mathrm{j} 14.931$

