Op-Amp Circuits with Phasors

Single-Pole Low-Pass Filter

Find the voltage, $y(t)$, for

$$
x(t)=3 \sin (50 t)
$$

Solution: Convert to phasor notation

$$
\begin{aligned}
& 3 \sin (50 t) \rightarrow 0-j 3 \\
& 0.1 \mu F \rightarrow \frac{1}{j \omega C}=-j 200 k
\end{aligned}
$$

Write the voltage node equations. At node V3, V+=V-

$$
\begin{align*}
& V_{2}=V_{1} \tag{1}\\
& V_{1}=0 \tag{2}
\end{align*}
$$

Sum the current to zero at node V2

$$
\begin{equation*}
\left(\frac{V_{2}-(-j 3)}{10 k}\right)+\left(\frac{V_{2}-V_{3}}{100 k}\right)+\left(\frac{V_{2}-V_{3}}{-j 200 k}\right)=0 \tag{3}
\end{equation*}
$$

Solve. Plug in $\mathrm{V} 1=\mathrm{V} 2=0$ into (3)

$$
\begin{aligned}
& \left(\frac{0-(-j 3)}{10 k}\right)+\left(\frac{0-V_{3}}{100 k}\right)+\left(\frac{0-V_{3}}{-j 200 k}\right)=0 \\
& \left(\frac{-1}{100 k}+\frac{-1}{-j 200 k}\right) V_{3}=\left(\frac{-j 3}{10 k}\right) \\
& V_{3}=12+j 24=26.8 \angle 63^{0}
\end{aligned}
$$

meaning

$$
\begin{aligned}
& v_{3}(t)=12 \cos (50 t)-24 \sin (50 t) \\
& v_{3}(t)=26.8 \cos \left(50 t+63^{0}\right)
\end{aligned}
$$

Checking in PartSim: The input is

$$
H z=\frac{\omega}{2 \pi}=\frac{50 \mathrm{rad} / \mathrm{sec}}{2 \pi}=7.958 \mathrm{~Hz}
$$

To see the output, select the probes to be the input and the output.
Run a transient simulation for 3 cycles

$$
t_{\max }=3 T=\frac{3}{f}=\frac{3}{7.958 H z}=377 \mathrm{~ms}
$$

| Enable simulations |
| :---: | :--- | :--- |
| DC Bias \square DC Sweep \square AC Analysis \quad Transient Response |

Configuration

This results in

Note:

- The period is $126 \mathrm{~ms}(7.958 \mathrm{~Hz}=50 \mathrm{rad} / \mathrm{sec})$
- The peak is 26.825 V (vs. 26.8 V calculated)
- The peak for the output $(\cos (0))$ is 22 ms ahead of the zero crossing for the input $(\sin (0))$. This works out to

$$
\phi=\left(\frac{22 \mathrm{~ms} \text { time lead }}{126 \mathrm{~ms} \text { period }}\right) \cdot 360^{0}=62.8^{0} \text { phase shift (vs. } 63 \text { degrees computed) }
$$

Also note that if you change the frequency of $\mathrm{x}(\mathrm{t})$, you have to resolve the entire problem.

Example 2: Two-Pole Op-Amp Circuit

Find $y(t)$ for

$$
x(t)=3 \cos (40 t)
$$

Step 1: Convert to phasors

$$
\begin{aligned}
& 3 \cos (40 t) \rightarrow 3+j 0 \\
& 0.1 \mu F \rightarrow \frac{1}{j \omega C}=-j 250 k
\end{aligned}
$$

Step 2: Write the voltage node equations. With 4 nodes, we need 4 equations. Start with the easy one: for negative feedback, $\mathrm{V}+=\mathrm{V}$ -

$$
\begin{equation*}
V_{2}=V_{3} \tag{1}
\end{equation*}
$$

Now write three more

$$
\begin{align*}
& \left(\frac{V_{1}-3}{100 k}\right)+\left(\frac{V_{1}-V_{4}}{-j 250 k}\right)+\left(\frac{V_{1}-V_{2}}{100 k}\right)=0 \tag{2}\\
& \left(\frac{V_{2}-V_{1}}{100 k}\right)+\left(\frac{V_{2}-0}{-j 250 k}\right)=0 \tag{3}\\
& \left(\frac{V_{3}-0}{100 k}\right)+\left(\frac{V_{3}-V_{4}}{100 k}\right)=0 \tag{4}
\end{align*}
$$

Step 3: Solve. Group terms

$$
\begin{aligned}
& V_{2}-V_{3}=0 \\
& \left(\frac{1}{100 k}+\frac{1}{-j 250 k}+\frac{1}{100 k}\right) V_{1}-\left(\frac{1}{100 k}\right) V_{2}-\left(\frac{1}{-j 250 k}\right) V_{4}=\left(\frac{3}{100 k}\right) \\
& \left(\frac{-1}{100 k}\right) V_{1}+\left(\frac{1}{100 k}+\frac{1}{-j 250 k}\right) V_{2}=0 \\
& \left(\frac{1}{100 k}+\frac{1}{100 k}\right) V_{3}+\left(\frac{-1}{100 k}\right) V_{4}=0
\end{aligned}
$$

Place in matrix form

$$
\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
\left(\frac{1}{100 k}+\frac{1}{-j 250 k}+\frac{1}{100 k}\right) & \left(\frac{-1}{100 k}\right) & 0 & \left(\frac{-1}{-j 250 k}\right) \\
\left(\frac{-1}{100 k}\right) & \left(\frac{1}{100 k}+\frac{1}{-j 250 k}\right) & 0 & 0 \\
0 & 0 & \left(\frac{1}{100 k}+\frac{1}{100 k}\right) & \left(\frac{-1}{100 k}\right)
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\left(\frac{3}{100 k}\right) \\
0 \\
0
\end{array}\right]
$$

Solve in Matlab

```
a1 = [0,1,-1,0];
a2 = [1/100000 + 1/(-j*250000) + 1/100000, -1/100000, 0, 1/(j*250000)]
a3 = [-1/100000, 1/100000 + 1/(-j*250000), 0, 0]
a4 = [0,0,2/100000, -1/100000]
A = [a1;a2;a3;a4]
```



```
B = [0;3/100000;0;0]
    0.
    0.00003
    0.
    0.
V = inv(A)*B
V1 3.4658041 - 0.2218115i
V2 2.9112754 - 1.3863216i
V3 2.9112754 - 1.3863216i
V4 5.8225508 - 2.7726433i
```

So

$$
v_{4}(t)=5.822 \cos (40 t)+2.77 \sin (40 t) \quad \text { rectangular form }
$$

$$
v_{4}(t)=6.447 \cos \left(40 t-25^{0}\right) \quad \text { polar form }
$$

Checking in PartSim: Note that $40 \mathrm{rad} / \mathrm{sec}=6.366 \mathrm{~Hz}$

Running a transient simulation for 400 ms (about 3 cycles)

The output peak is 6.447 V (vs. 6.447 V computed)
The output is delayed by 9.9 ms from the input. The phase shift is

$$
\phi=\left(\frac{9.9 \mathrm{~ms} \text { delay }}{157 \mathrm{~ms} \text { period }}\right) \cdot 360^{0}=22.7^{0} \text { delay } \quad(\text { vs. } 25 \text { degrees computed })
$$

