Superposition with Phasors

Op-Amp circutis with RLC components are linear circuits. Linear means

$$
f(a x+b y)=a f(x)+b f(y)
$$

In English, this means that

- If the input has N terms,
- You can treat this as N separate problems.

Solve the output for each term separately.

- To get the total input, you add all N input terms together.
- To get the total output, you add all N output terms together.

Pictorially, this means that

- If you have a single circuit with multiple inputs (which is how you'd build the circuit),
- You can treat this as if there were multiple circuits, each with a single input.

The total output will be the sum of each separate input.

Superposition allows you to treat a circuit with multiple inputs as if there were multiple circuits, each with a single input.

Example: RLC Filter

For example, determing $y(t)$ for the following circuit assuming

$$
x(t)=10+9 \sin (100 t)+8 \cos (200 t)
$$

Solution: Use superposition and treat this as three separate problems.
Part 1 (DC). Assume

$$
x_{1}(t)=10
$$

Analyze the circuit for this input.

$$
\begin{aligned}
& \omega=0 \\
& L \rightarrow j \omega L=0 \\
& C \rightarrow \frac{1}{j \omega C}=\infty
\end{aligned}
$$

The circuit then becomes

Equivalent Circuit for $x(t)=10$
From voltage division

$$
\begin{aligned}
& y_{1}=\left(\frac{2000}{2000+278}\right) \cdot 10 \\
& y_{1}=8.7796 \mathrm{~V}
\end{aligned}
$$

Part 2: Assume

$$
x_{2}(t)=9 \sin (100 t)
$$

Using Phasor analysis

$$
\begin{aligned}
& \omega=100 \\
& X=0-j 9 \\
& L \rightarrow j \omega L=j 1000 \\
& C \rightarrow \frac{1}{j \omega C}=-j 5000
\end{aligned}
$$

The circuit at $100 \mathrm{rad} / \mathrm{sec}$ becomes:

Using phasor analysis, the capacitor and 2000 resistor in parallel are

$$
\left(\frac{1}{2000}+\frac{1}{-j 5000}\right)^{-1}=1724-j 689.6 \Omega
$$

By voltage division

$$
\begin{aligned}
& Y_{2}=\left(\frac{(1724-j 689.6)}{(1724-j 689.6)+(278+j 1000)}\right) \cdot(0-j 9) \\
& Y_{2}=-4.201-j 7.099
\end{aligned}
$$

Converting back to time

$$
y_{2}(t)=-4.201 \cos (100 t)+7.099 \sin (100 t)
$$

Part 3: Assume

$$
x_{3}(t)=8 \cos (200 t)
$$

Using Phasor analysis

$$
\begin{aligned}
& \omega=200 \\
& X=8+j 0 \\
& L \rightarrow j \omega L=j 2000 \\
& C \rightarrow \frac{1}{j \omega C}=-j 2500
\end{aligned}
$$

The circuit at $200 \mathrm{rad} / \mathrm{sec}$ becomes:

The 2000 resistor and capacitor in parallel become

$$
\left(\frac{1}{2000}+\frac{1}{-j 2500}\right)^{-1}=1219-j 975.6
$$

By voltage division

$$
\begin{aligned}
& Y=\left(\frac{1219-j 975.6}{(1219-j 975.6)+(278-j 2000)}\right) \cdot(8+j 0) \\
& Y=2.009-j 6.586
\end{aligned}
$$

meaning

$$
y_{3}(t)=2.009 \cos (200 t)+6.586 \sin (200 t)
$$

The total answer is the sum of the three parts

$$
\begin{gathered}
y(t)=y_{1}+y_{2}+y_{3} \\
y(t)=8.7796-4.201 \cos (100 t)+7.099 \sin (100 t)+2.009 \cos (200 t)+6.586 \sin (200 t)
\end{gathered}
$$

