Superposition (take 2)

Superposition allows you to analyze circuits with multiple sinusoidal inputs. If this is the case

- Treat the problem as N separate problems, each with a single sinusoidal input.
- Solve each of the N problems separately using phasor analysis
- Add up all of the answers to get the total output.

Suppose your circuit has an input that isn't a sum of sinusoids. A typical engineering solution is to change the problem so that the inputs are sinusoids. The trick is you want to change the problem so that

- It is solvable (a big plus), and
- It keeps the flavor of the original problem.

Example 1: AC to DC Converter

The following circuit is an AC to DC converter that we'll cover in ECE 320 Electronics I. Determine the voltage at V2:

AC to DC Converter covered in ECE 320 Electronics I

This is actually a difficult problem. From PartSim, the voltage at V1 (on the left) looks like a full-wave rectified sine wave (see figure below). We don't have tools to analyze a circuit with such an input. So, change the problem. Assume instead that the input

- Is a DC signal 11.31 V on average (the same as the average of a 20 V sine wave which has been shifted down by 1.4 V)
- The frequency of AC signal is 120 Hz (same as the actual voltage)
- The amplitude of the AC signal is 20 Vpp (same as the actual voltage).

So, pretend instead that the voltage V1 is

$$
V_{1}(t)=11.31+10 \cos (754 t)
$$

This isn't 100% correct, but it keeps the flavor of the problem (same DC signal, same frequency, same peak-to-peak value in voltage).

Actual Signal at V1 (blue) and its approximation (red)
Both signals have the same frequency, DC value, and peak-to-peak voltage.

With this approximate input, now calculate V2
DC Analysis: The capacitor is open and the inductor is a short. By voltage division

$$
\begin{aligned}
& V_{2}=\left(\frac{100}{100+30}\right) 11.31 \mathrm{~V} \\
& V_{2}=8.70 \mathrm{~V}
\end{aligned}
$$

AC Analysis: The capacitor and inductor become

$$
\begin{aligned}
& L \rightarrow j \omega L=j 754 \Omega \\
& C \rightarrow \frac{1}{j \omega C}=-j 132.6 \Omega
\end{aligned}
$$

Adding the capacitor and 100 Ohm resistor in parallel

$$
-j 132.6 \Omega \text { || } 100 \Omega=63.75-j 48.07
$$

By voltage division, V 2 is then

$$
\begin{aligned}
& V_{2}=\left(\frac{(63.75-j 48.07)}{(63.75-j 48.07)+(30+j 754)}\right) \cdot(10+j 0) \\
& V_{2}=-0.551-j 0.976
\end{aligned}
$$

The peak-to-peak voltage at V 2 will be twice the magnitude

$$
\begin{aligned}
& V_{2 p p}=2 \cdot|-0.551-j 0.976| \\
& V_{2 p p}=2.242 V_{p p}
\end{aligned}
$$

The actual voltage at V2 (from PartSim) look like this:

Note:

- The answers are fairly close. We kept the flavor of the problem
- The answers are a little off. This isn't surprising since the input isn't a pure sine wave like assumed.

Also note that even though the input is very different from a sine wave, the output is almost a pure sine wave with a DC offset. This means that treating this as a superposition problem with two terms

- A DC term, and
- A 120 Hz term
was a pretty good assumption.

Example 2: Buck Converter

Another circuit we cover in Electronics I is a Buck Converter. This circuit converts a DC signal (such as a 20.0 V DC signal from a battery) to a different voltage, such as 5 V to drive your electronics. To do this, an electronic switch chatters on and off at 1 kHz so that the average voltage at V 1 is what you need to make the output 5.00 V . The inductor and capacitor filter the signal to remove the chatter at the switching frequency (1 kHz in this case)

Example 2: A Buck Converter (covered in ECE 320 Electronics I)
Determine the signal at V2.

Again, this is a difficult problem. The signal at V1 looks like the following:

Voltage at V1 with a Buck Converter
This isn't a sine wave, so change the problem so that

- V1 is a DC term plus a sine wave, while
- Keeping the flavor of the problem.

The DC voltage is the average of V1:

$$
\begin{aligned}
& V_{1}=0.8 \cdot 20 \mathrm{~V}+0.2 \cdot(-0.7 \mathrm{~V}) \\
& V_{1}=15.86 \mathrm{~V}
\end{aligned}
$$

The AC voltage at V1 is

- 1 KHz
- 20.7Vpp

So, assume

$$
V_{1} \approx 15.86+\frac{20.7}{2} \cos (6280 t)
$$

DC Analysis:

$$
V_{1}=15.86
$$

The inductor is a short and the capacitor is an open circuit.

$$
\begin{aligned}
& V_{2}=\left(\frac{100}{100+20}\right) V_{1} \\
& V_{2}=13.21 \mathrm{~V}
\end{aligned}
$$

AC Analysis

$$
\begin{aligned}
& V_{1}=10.35 \cos (6280 t) \Rightarrow 10.35+j 0 \\
& \omega=6280 \quad(1 \mathrm{kHz}) \\
& L \rightarrow j \omega L=j 628 \Omega \\
& C \rightarrow \frac{1}{j \omega C}=-j 53.1 \Omega
\end{aligned}
$$

Adding the 100 Ohm resistor and capacitor in parallel

$$
100 \Omega \|-j 53.1 \Omega=21.98-j 41.41
$$

From voltage division

$$
\begin{aligned}
& V_{2}=\left(\frac{(21.98-j 41.41)}{(21.98-j 41.41)+(20+j 628)}\right)(10.35+j 0) \\
& V_{2}=-0.699-j 0.438=0.825 \angle-148^{0}
\end{aligned}
$$

This tells you that

$$
V_{2} \approx 13.21+0.825 \cos \left(6280 t-148^{0}\right)
$$

From PartSim, the circuit is

The simulation results are

Comparing the simulated vs. calculated results

	Calculated V2	PartSim V2
DC Value	13.21 V	13.32 V
AC Value	1.65 Vpp	1.285 Vpp

Again, our results are close. By changing the problem

- We were able to solve for V2
- Without significantly changing the results (keeping the flavor of the problem)

