
Fourier Transform

Superposition allows you to analyze circuits with multiple sinusoidal inputs.  If this is the case
Treat the problem as N separate problems, each with a single sinusoidal input.
Solve each of the N problems separately using phasor analysis
Add up all of the answers to get the total output.

Suppose your circuit has an input that isn't a sum of sinusoids.  
One solution is to approximate the input with two sine wave (what we did last lecture)
A second solution is to define the input in terms of sine waves (this lecture)

x(t)
y(t)

Circuit ?
Fourier Transform:  How to deal with periodic inputs which are not sinusoids

The Fourier Transform is a tool which allows you to take signal which is periodic in time T

x(t) = x(t + T)
and express it as an infinite series

x(t) = a0 + Σ
n=1

∞
ancos (nω0t) + bnsin (nω0t)

where

ω0 = 2π
T

Equals is a very powerful symbol:  it states that both sides of the equation are equivalent
The left side is a periodic function which isn't expressed in terms of sine waves
The right side is a periodic function which is expressed in terms of sine waves.

We like the right side:  it allows us to use phasor analysis to solve any circuit.

What the Fourier Transform says is, going right to left

    If you add up a bunch of signals which are periodic in time T, the result is also periodic in time T

Duh.  That's not the least bit surprising. Going left to right, however, is much more significant

    If a signal is periodic and is not a sine wave, it is made up of  sine waves which are harmonics of the
fundamental.
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To determine the Fourier coefficient, there are several methods which you'll cover in Circuits II and Signals and
Systems.  A numerical solution using Matlab is

a0 = mean(x)

an = 2 ⋅mean(x ⋅ cos (nω0t))

bn = 2 ⋅mean(x ⋅ sin (nω0t))

Proof:  All sine waves are orthogonal.  The DC term is

a0 = mean(x)

a0 = mean(a0 + Σ
n=1

∞
ancos (nω0t) + bnsin (nω0t))

a0 = mean(a0) +mean(a1cos (ω0t)) +mean(a2cos (2ω0t)) + ...
The mean of a sine wave is zero

a0 = a0 + 0 + 0 + ...

Term a1:

a1 = 2mean(x ⋅ cos (ω0t))

a1 = 2mean((a0 + a1cos (ω0t) + b1sin (ω0t) + ...) ⋅ cos (ω0t))
a1 = 2mean(a0 ⋅ cos (ω0t)) + 2mean(a1cos2(ω0t)) + 2mean(b1sin (ω0t)cos (ω0t)) + ...

The mean of a sine wave is zero.  The mean of sin2(t) is 1/2

a1 = 0 + 2 ⋅ a1
2 + 0 + ...

a1 = a1

etc.

Time Scaling:  The period of the periodic waveform has no impact on the Fourier coefficients.  If you do a
change in variable (i.e. change the time scaling) you can always make the period equal to .  This is convenient2π
since it makes the fundamental frequency 1 rad/sec

T = 2π
(at some definition of time)

ω0 = 2π
T = 1
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Some Common Fourier Transforms
Sine Wave:  Express

x(t) = 3 cos(5t)
in terms of it's Fourier series.

Answer:  You're already there...

x(t) = 3 cos(5t)

Square Wave:  Express a 0V / 5V  5 rad/sec square wave in terms of its Fourier Transform

x(t) =
⎧

⎩
⎨

5V cos(5t) > 0
0V otherwise

The fundamental frequency is 5 rad/sec.  The period is

 secondsT = 2π
ω0 = 1.257

In Matlab, you can find the Fourier coefficients

Wo = 5;
T = 2*pi / Wo;
t = [0:0.0001:1]' * T;
 
x = 5 * (cos(5*t) > 0);
 
a0 = mean(x)

 a0  = 2.50025  
 
a1 = 2*mean(x .* cos(Wo*t))

 a1  = 3.1837804  
 
b1 = 2*mean(x .* sin(Wo*t));

a2 = 2*mean(x .* cos(2*Wo*t));
b2 = 2*mean(x .* sin(2*Wo*t));

a3 = 2*mean(x .* cos(3*Wo*t));
b3 = 2*mean(x .* sin(3*Wo*t));
 
a4 = 2*mean(x .* cos(4*Wo*t));
b4 = 2*mean(x .* sin(4*Wo*t));

a5 = 2*mean(x .* cos(5*Wo*t));
b5 = 2*mean(x .* sin(5*Wo*t));
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This results in

n 0 1 2 3 4 5
an 2.5 3.18 0 1.06 0 0.64
bn 0 0 0 0 0 0

What this means is

x(t) ≈ 2.5 + 3.18 cos (5t) + 1.06 cos (15t) + 0.64 cos (25t) + ...
 

 Comparing the original function to its Fourier approximation

y = a0 + a1*cos(5*t) + a3*cos(15*t) + a5*cos(25*t);
plot(t,x,'b',t,y,'r');
xlabel('Time (seconds)');
ylabel('Volts');

Square Wave (blue) and Fourier Approximation taken out to the 5th Harmonic (red)

The red line (the Fourier approximation) doesn't follow the blue line ( x(t) ) exactly.  You need more terms to
make the two match up exactly.
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Triangle Wave:  Find the Fourier transform for a triangle wave with a period of 2 seconds:

x(t) = x(t + 2)

x(t) =
⎧

⎩
⎨

t 0 < t < 1
2 − t 1 < t < 2

Solution:  The fundamental frequency is

T = 2

ω0 = 2π
T = π

In Matlab:

T = 2;
t = [0:0.0001:1]' * T;
Wo = 2*pi/T;
 
x = t .* (t<1)  +  (2-t) .* (t>=1);
 

Now it's the same as before
 
a0 = mean(x)

a1 = 2*mean(x .* cos(Wo*t))
a2 = 2*mean(x .* cos(2*Wo*t))
a3 = 2*mean(x .* cos(3*Wo*t))
a4 = 2*mean(x .* cos(4*Wo*t))
a5 = 2*mean(x .* cos(5*Wo*t))
 
b1 = 2*mean(x .* sin(Wo*t))
b2 = 2*mean(x .* sin(2*Wo*t))
b3 = 2*mean(x .* sin(3*Wo*t))
b4 = 2*mean(x .* sin(4*Wo*t))
b5 = 2*mean(x .* sin(5*Wo*t))

The result is

n 0 1 2 3 4 5
an 0.50 -0.405 0 -0.045 0 -0.016 
bn 0 0 0 0 0 0

Plotting the Fourier approximation taken out to the 5th harmonic vs. the triangle wave looks like the following:

y = a0 + a1*cos(Wo*t) + a2*cos(2*Wo*t) + a3*cos(3*Wo*t) + a4*cos(4*Wo*t) + a5*cos(5*Wo*t);

y = y + b1*sin(Wo*t) + b2*sin(2*Wo*t) + b3*sin(3*Wo*t) + b4*sin(4*Wo*t) + b5*sin(5*Wo*t);
 
plot(t,x,'b',t,y,'r');
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Triangle Wave (blue) and Fourier Approximation taken out to the 5th Harmonic (red)

Half-Wave Rectified Sine Wave:  Finally, determine the Fourier series approximation to a half-wave rectified
sine wave:

x(t) = x(t + 2π)

x(t) =
⎧

⎩
⎨

5 sin(t) sin(t) > 0
0 otherwise

Solution:  Same as before.  The period and fundamental frequency are 

T = 2π

ω0 = 2π
T = 1

The Fourier Coefficients from Matlab are ( same as before except for x(t) )

T = 2*pi;
t = [0:0.0001:1]' * T;
Wo = 2*pi/T;
x = max(0, 5*sin(t));a0 = mean(x)

a0 = mean(x)
a1 = 2*mean(x .* cos(Wo*t))
a2 = 2*mean(x .* cos(2*Wo*t))
a3 = 2*mean(x .* cos(3*Wo*t))
a4 = 2*mean(x .* cos(4*Wo*t))
a5 = 2*mean(x .* cos(5*Wo*t))
 
b1 = 2*mean(x .* sin(Wo*t))
b2 = 2*mean(x .* sin(2*Wo*t))
b3 = 2*mean(x .* sin(3*Wo*t))
b4 = 2*mean(x .* sin(4*Wo*t))
b5 = 2*mean(x .* sin(5*Wo*t))
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This results in

n 0 1 2 3 4 5
an 1.591 0 -1.061 0 -0.212 0 
bn 0 2.500 0 0 0 0

meaning

x(t) ≈ 1.591 + 2.5 sin(t) − 1.061 cos(2t) − 0.212 cos(4t) + ...

Plotting x(t) against its Fourier series approximation taken out to the 5th harmonic looks like the following:

y = a0 + a1*cos(Wo*t) + a2*cos(2*Wo*t) + a3*cos(3*Wo*t) + a4*cos(4*Wo*t) + a5*cos(5*Wo*t);
 
y = y + b1*sin(Wo*t) + b2*sin(2*Wo*t) + b3*sin(3*Wo*t) + b4*sin(4*Wo*t) + b5*sin(5*Wo*t);
 
plot(t,x,'b',t,y,'r')

 

Half-Rectified Sine Wave (blue) and Fourier Series Approximation (red)

Like before, if you add more terms the Fourier Series approximation converges to the actual signal. 
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