The p-Operator

Any time you try to find the voltages and currents for a circuit with inductors and capacitors, you are trying to solve a differential equation. The methods used in Calculus I- III are rather tedious for this purpose: there has to be a better way.

One tool to speed up the analysis of circuits with inductors and capacitors is to

- Use the p-operator (EE 206), or
- LaPlace Transforms (coming soon in Circuits II)

The idea is as follows.

Resistor circuits are fairly easy to analyze with the fundamental relationship

$$
V=I R
$$

If we can express the relationship for inductors and capacitors in the same way, circuit analysis with inductors and capacitors will be greatly simplified.

The basic equation for an inductor is:

$$
v=L \frac{d i}{d t}
$$

Assume that the current is of the form

$$
i(t)=a \cdot e^{p t}
$$

Then

$$
\begin{aligned}
& v(t)=L \frac{d}{d t}\left(a e^{p t}\right) \\
& v(t)=L p a e^{p t} \\
& v(t)=L p \cdot i(t)
\end{aligned}
$$

This means that inductors look like resistors with a resistance of

$$
Z_{L}=L p
$$

The basic equation for a capacitor is

$$
i(t)=C \frac{d v}{d t}
$$

Assume the voltage is of the form

$$
v(t)=a \cdot e^{p t}
$$

then

$$
i(t)=\frac{d}{d t}\left(a e^{p t}\right)
$$

$$
\begin{aligned}
& i(t)=C p \cdot e^{p t} \\
& i(t)=C p \cdot v(t)
\end{aligned}
$$

or

$$
v(t)=\left(\frac{1}{C_{p}}\right) i(t)
$$

This means that capacitors look like resistors with an impedance of

$$
Z_{c}=\left(\frac{1}{C p}\right)
$$

What the p-operator does is it changes using calculus to solve circuits problems to using algebra - with the assumption that algebra is easier than calculus. Solving the same problems as yesterday using the p-opeator hopefully gives the same answers with a lot less work.

Natural Response of an RL Circuit

Find the voltage $\mathrm{v} 1(\mathrm{t})$. Assume the switch opens up at $\mathrm{t}=0$

The initial condition (just prior to $\mathrm{t}=0$)

$$
i_{1}(0)=\left(\frac{10 V}{1 \Omega}\right)=10 A
$$

The loop equation becomes

$$
\begin{aligned}
& 10 I_{1}+0.1 p \cdot I_{1}=0 \\
& (10+0.1 p) I_{1}=0
\end{aligned}
$$

meaning that

$$
p=-100
$$

and

$$
i_{1}(t)=a e^{-100 t}
$$

Plugging in the initial condition results in

$$
i_{1}(t)=10 e^{-100 t} \quad \mathrm{t}>0
$$

Natural Response of a 2-stage RL Filter

Find the voltages, $v 1(t)$ and $v 2(t)$. Assume the switch has been closed for a long time at opens at $t=0$.

The initial conditions are

$$
\begin{aligned}
& i_{1}(0)=\frac{10 \mathrm{~V}}{1 \Omega}=10 \mathrm{~A} \\
& i_{2}(0)=0
\end{aligned}
$$

Using the p-operator, the loop equations become

$$
\begin{aligned}
& 0.2 p I_{1}+20 I_{1}+10\left(I_{1}-I_{2}\right)=0 \\
& 10\left(I_{2}-I_{1}\right)+0.1 p I_{2}=0
\end{aligned}
$$

To solve, group terms

$$
\begin{array}{ll}
(0.2 p+30) I_{1}-10 I_{2}=0 & * 10 \\
-10 I_{1}+(0.1 p+10) I_{2}=0 & *(0.2 \mathrm{p}+30)
\end{array}
$$

Solve using Gauss elimination

$$
-100 I_{2}+(0.1 p+10)(0.2 p+30) I_{2}=0
$$

$$
\left(0.02 p^{2}+5 p+200\right) I_{2}=0
$$

Factor

$$
0.02(p+50)(p+200) I_{2}=0
$$

meaning

$$
\mathrm{p}=-50 \text { or }-200
$$

meaning

$$
i_{2}(t)=a e^{-50 t}+b e^{-200 t}
$$

This also tells you what $\mathrm{i} 1(\mathrm{t})$ is. From the second differential equation

$$
10\left(i_{2}-i_{1}\right)+0.1 \frac{d i_{2}}{d t}=0
$$

you get

$$
i_{1}=0.01 \frac{d i_{2}}{d t}+i_{2}
$$

Plugging in the initial conditions

$$
\begin{align*}
& i_{2}(0)=0=a+b \tag{1}\\
& i_{1}(0)=10=0.01(-50 a-200 b)+(a+b) \tag{2}\\
& 10=0.5 a-b
\end{align*}
$$

Solving

$$
\begin{aligned}
& a=6.667 \\
& b=-6.667
\end{aligned}
$$

and

$$
i_{2}(t)=6.667 e^{-50 t}-6.667 e^{-200 t} \quad t>0
$$

which is the same answer as we got before.

RC Circuits and the operator

Assume for the following circuit the switch opens at $t=0$. Find $V(t)$

Write the voltage node equation at V :

$$
\begin{aligned}
& \frac{V}{10}+\frac{V}{100 / p}=0 \\
& (0.1+0.01 p) V=0 \\
& p=-10
\end{aligned}
$$

This tells you that

$$
v(t)=a \cdot e^{-10 t}
$$

Plugging in the initial condition

$$
v(0)=\left(\frac{10}{10+1}\right) \cdot 10 V=9.09 V
$$

results in

$$
v(t)=9.09 \cdot e^{-10 t} \quad t>0
$$

Same answer as before

2-Stage RC Filter

The initial conditions are

$$
\begin{aligned}
& v_{1}(0)=\left(\frac{10}{10+1}\right) 10 \mathrm{~V}=9.09 \mathrm{~V} \\
& v_{2}(0)=v_{1}(0)=9.09 \mathrm{~V}
\end{aligned}
$$

Using the p-operator, the voltage node equations become

$$
\begin{aligned}
& \left(\frac{V_{1}}{10}\right)+\left(\frac{V_{1}}{100 / p}\right)+\left(\frac{V_{1}-V_{2}}{20}\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{20}\right)+\left(\frac{V_{2}}{50 / p}\right)=0
\end{aligned}
$$

Doing some algebra...

$$
\begin{array}{ll}
(p+15) V_{1}-5 V_{2}=0 & * 2.5 \\
-2.5 V_{1}+(p+2.5) V_{2}=0 & *(\mathrm{p}+15)
\end{array}
$$

Solving for V2

$$
\begin{aligned}
& ((p+2.5)(p+15)-12.5) V_{2}=0 \\
& \left(p^{2}+17.5 p+25\right) V_{2}=0 \\
& (p+1.569)(p+15.931) V_{2}=0
\end{aligned}
$$

meaning

$$
p=\{-1.569,-15.931\}
$$

and

$$
v_{2}(t)=a \cdot e^{-1.569 t}+b \cdot e^{-15.931 t}
$$

Plugging in the initial conditions

$$
v_{2}(0)=9.09=a+b
$$

and

$$
V_{1}=(0.4 p+1) V_{2}
$$

The operator ' p ' means 'the derivative of', or

$$
v_{1}(0)=9.02=0.4(-1.569 a=15.93 n)+(a+b)
$$

Solving 2 equations for 2 unknowns results in

$$
\begin{aligned}
& a=10.083 \\
& b=-0.993
\end{aligned}
$$

and

$$
v_{2}(t)=10.083 e^{-1.569}-0.993 e^{-15.931 t} \quad \mathrm{t}>0
$$

which is what we got before.

