Circuit Elements and Kirchoff's Laws
 EE 206 Circuits I

Jake Glower - Lecture \#2
Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Circuit Elements: Voltage Sources

Circuit Elements: Current Sources

Passive Circuit Elements

Independent Sources

Voltage Source: Like a battery: the voltage is fixed

- Current depends upon the load (can be anything, positive or negative)

Current Source: LED driver: the current is fixed

Dependent Sources

Controlled Current and Voltage Sources: A diamond indicates a controlled voltage source or a controlled current source.

Controlled sources arise from various components covered in ECE 320 Electronics

- Operational Amplifiers (voltage controlled voltage source)
- Transistors (current controlled current source)
- MOSFET (voltage controlled current source)

For this class, just treat them as a device.

Ohm's Law

- V = I R
- Current goes into the + terminal

Other Forms:

$$
\begin{aligned}
& I=\frac{V}{R} \\
& R=\frac{V}{I}
\end{aligned}
$$

Power:

$$
\begin{aligned}
& P=V I \\
& P=\frac{V^{2}}{R} \\
& P=I^{2} R
\end{aligned}
$$

Kirchoff's Laws

Kirchoff's laws simply restate the conservation of voltage and current:

- If you sum the voltages around any closed path, the sum must be zero.
- If you sum the current flowing away from a point, the sum must be zero.

Conservation of Voltage:

Around any closed path, the voltages must add to zero.

- You can use this to find unknown voltages.

Example: determine the voltages V1..V4 for the following circuit:

Solution:

- Around any closed-path, the voltages must sum to zero.
- Add if you hit the + sign first
- Subtract if you hit the - sign first

Path 1: (Blue)

$$
-50+V_{3}+23-(-5)=0
$$

$$
V_{3}=22 \mathrm{~V}
$$

Path 2: (Red)

$$
\begin{aligned}
& -23+V_{4}+7-(-6)=0 \\
& V_{4}=10 V
\end{aligned}
$$

Path 3: (Red)

$$
\begin{aligned}
& -50+V_{1}+10+15+2-8-(-6)-(-5)=0 \\
& V_{1}=5 V
\end{aligned}
$$

Path 4 (Cyan)

$$
\begin{aligned}
& -23-V_{2}+15+2+7-(-6)=0 \\
& V_{2}=10 \mathrm{~V}
\end{aligned}
$$

Other paths are also valid

Conservation of Current

- Electrons cannot be created or destroyed: they can only be pushed around (Uncle Wally)
- The current into a node must equal the current out of that node
- The sum of the current from a node must add to zero

Example: Determine I1..I7

A: $30=10+\mathrm{I} 1$ $\mathrm{I} 1=20$

B: $I 6=30$

C: $24=17$

D: $5=I 3+2$
$\mathrm{I} 3=3$

E: $\quad 2+\mathrm{I} 4=24$
$\mathrm{I} 4=22$

This lets you solve for I2 and I5:
F: $20=\mathrm{I} 2+5$
$\mathrm{I} 2=15$

G: $15+24=30$
I5 $=6$

