Circuit Elements and Kirchoff's Laws EE 206 Circuits I Jake Glower - Lecture #2

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Circuit Elements: Voltage Sources

Element	Symbol	VI Relationship
Voltage Source (battery)	a	$V_{ab} = V_0$
(Saus)	V0 + Vab	I = any
Voltage Controlled Voltage Source (amplifier)	l	$V_{ab} = kV_{12}$ $I = any$
	b -	

Circuit Elements: Current Sources

Element	Symbol	VI Relationship
Current Source (LED driver)	a 🔰 +	$I = I_0$
(LLD dilvoi)	lo Vab	$V_{ab} = any$
Current Controlled Current Source (transistor)	k lc Vab	$I = kI_c$ $V_{ab} = any$

Passive Circuit Elements

Element	Symbol	VI Relationship
Resistor (basic circuit element)	l ▼ a + R = Vab	$V_{ab} = IR$
	R Vab	
Capacitor (basis circuit element)	l	$I = C \frac{dV_{ab}}{dt}$
	Vab	
Inductor (basic cicuit element)	1 ♥ a +	$V_{ab} = L_{dt}^{dI}$
	L Vab	

Independent Sources

Voltage Source: Like a battery: the voltage is fixed

• Current depends upon the load (can be anything, positive or negative)

Current Source: LED driver: the current is fixed

Dependent Sources

Controlled Current and Voltage Sources: A diamond indicates a controlled voltage source or a controlled current source.

Controlled sources arise from various components covered in ECE 320 Electronics

- Operational Amplifiers (voltage controlled voltage source)
- Transistors (current controlled current source)
- MOSFET (voltage controlled current source)

For this class, just treat them as a device.

Ohm's Law

- V = I R
- Current goes into the + terminal

Other Forms:

$$I = \frac{V}{R}$$

$$R = \frac{V}{I}$$

Power:

$$P = VI$$

$$P = \frac{V^2}{R}$$

$$P = I^2 R$$

Kirchoff's Laws

Kirchoff's laws simply restate the conservation of voltage and current:

- If you sum the voltages around any closed path, the sum must be zero.
- If you sum the current flowing away from a point, the sum must be zero.

Conservation of Voltage:

Around any closed path, the voltages must add to zero.

• You can use this to find unknown voltages.

Example: determine the voltages V1..V4 for the following circuit:

Solution:

- Around any closed-path, the voltages must sum to zero.
- Add if you hit the + sign first
- Subtract if you hit the sign first

Path 1: (Blue)

$$-50 + V_3 + 23 - (-5) = 0$$

 $V_3 = 22V$

Path 2: (Red)
$$-23 + V_4 + 7 - (-6) = 0$$

$$V_4 = 10V$$

Path 3: (Red)

$$-50 + V_1 + 10 + 15 + 2 - 8 - (-6) - (-5) = 0$$
$$V_1 = 5V$$

$$-23 - V_2 + 15 + 2 + 7 - (-6) = 0$$

 $V_2 = 10V$

Other paths are also valid

Conservation of Current

- Electrons cannot be created or destroyed: they can only be pushed around (Uncle Wally)
- The current into a node must equal the current out of that node
- The sum of the current from a node must add to zero

Example: Determine I1..I7

A:
$$30 = 10 + I1$$

 $I1 = 20$

B:
$$I6 = 30$$

C:
$$24 = I7$$

D:
$$5 = I3 + 2$$

 $I3 = 3$

E:
$$2 + I4 = 24$$

 $I4 = 22$

This lets you solve for I2 and I5:

F:
$$20 = I2 + 5$$

 $I2 = 15$

G:
$$I5 + 24 = 30$$

 $I5 = 6$

