Voltage and Current Division EE 206 Circuits I

Jake Glower - Lecture \#4
Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Voltage Division

Problem: Generate a voltage that is $\mathrm{X} \%$ of the input voltage.
Solution: Use two resistors in series:

$$
\begin{aligned}
& I=\frac{V_{\text {in }}}{R_{1}+R_{2}} \\
& V_{\text {out }}=I \cdot R_{1} \\
& V_{\text {out }}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) V_{\text {in }}
\end{aligned}
$$

Example: Reduce the voltage from a car battery $(13.2 \mathrm{~V})$ to 5 V so that a microcontroller can read the voltage.
Solution: Let

$$
\left(\frac{R_{1}}{R_{1}+R_{2}}\right)=\left(\frac{5 V}{13.2}\right)=0.379
$$

To limit the current to a safe level, let

$$
\mathrm{R} 2=1 \mathrm{M} \mathrm{Ohm}
$$

Then

$$
\mathrm{R} 1=610 \mathrm{k} \text { Ohms }
$$

Note

- This works as long as you don't use the 5 V
- This works as long as RL >> 610k
- RL is in parallel with R1, changing R1 (and changing the voltage)

Potentiometers:

- A resistor with a center tap (wiper)
- Can be used as a variable resistor
- Can be used as a variable voltage

Potentiometer: A long resistive wire connects the two end terminals. A center tap lets you output the voltage or resistance in-between the end terminals.
from www.westfloridacomponents.com

Potentiometer: Symbol

The symbol for a potentiometer reflects how it is built:

Symbol for a potentiometer. A resistor with an arrow indicating the center tap

Gain Adjustment

- Top = Signal
- Bottom = Ground
- Wiper: 0% to 100% of signal

Potentiometer used to attenuate an input signal from 0\% to 100\%

Loading

If there is no loading ($\mathrm{RL}=$ infinity) the voltage is linear

$$
\begin{aligned}
V_{\text {out }} & =\left(\frac{R_{1}}{R_{1}+R_{2}}\right) V_{\text {in }}: \\
V_{\text {out }} & =\left(\frac{a R}{a R+(1-a) R}\right) V_{\text {in }} \\
V_{\text {out }} & =a \cdot V_{\text {in }}
\end{aligned}
$$

If $R L$ is finite, the voltage droops

$$
\begin{aligned}
& V_{\text {out }}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) V_{\text {in }} \\
& R_{1}=a R \| R_{L}=\left(\frac{a R \cdot R_{L}}{a R+R_{L}}\right)
\end{aligned}
$$

$$
R_{2}=(1-a) R
$$

You can plot this in MATLAB with the following code:

```
R = 1000;
RL = 10000;
a = [0:0.01:1]'
Vin = 1;
R1 = a*R * RL ./ (a*R + RL);
R2 = (1-a)*R;
Vout = R1 ./ (R1 + R2);
plot(a,a,a,Vout);
xlabel('Pot Setting (a)');
ylabel('Gain');
```


Potentiometers Used as a Variable Resistor

- Allows you to adjust resistors in a circuit
- Convenient if you want to change values without having to rebuild the circuit
- R varies from 0% to 100% of the potentiometer's value

Current Division

Problem: Find the currents I1 and I2
Solution: Find the voltage, V1

$$
\begin{aligned}
& R=R_{1} \| R_{2}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1} \\
& V=I R=100 \mathrm{~mA} \cdot\left(\frac{1}{\left.\frac{1}{R_{1}+\frac{1}{R_{2}}}\right)}\right. \text {) }
\end{aligned}
$$

The currents are

$$
\begin{aligned}
& I_{1}=\frac{V_{1}}{R_{1}}=\left(\frac{\frac{1}{R_{1}}}{\frac{R_{1}}{R_{1}}+\frac{1}{R_{2}}}\right) \cdot 100 \mathrm{~mA} \\
& I_{2}=\frac{V_{1}}{R_{2}}=\left(\frac{\frac{1}{R_{2}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}\right) \cdot 100 \mathrm{~mA}
\end{aligned}
$$

Current Division

The current through a resistor x is

$$
I_{x}=\left(\frac{\text { The admittance }(1 / \mathrm{R}) \text { of what you're measuring }}{\text { The total (sum) admttance }}\right) \cdot \text { Current In }
$$

For this problem

$$
\begin{aligned}
& I_{1}=\left(\frac{\frac{1}{100}}{\frac{1}{100}+\frac{1}{200}}\right) \cdot 100 \mathrm{~mA}=66.7 \mathrm{~mA} \\
& I_{2}=\left(\frac{\frac{1}{200}}{\frac{100}{100}+\frac{1}{200}}\right) \cdot 100 \mathrm{~mA}=33.3 \mathrm{~mA}
\end{aligned}
$$

If you have more than one resistor, change it so that you have only two resistors

Current Division with 3 Resistors:

$$
\begin{aligned}
& I_{1}=\left(\frac{\frac{1}{100}}{\frac{1}{100}+\frac{1}{200}+\frac{1}{300}}\right) \cdot 100 \mathrm{~mA}=54.5 \mathrm{~mA} \\
& I_{2}=\left(\frac{\frac{1}{200}}{\frac{1}{100}+\frac{1}{200}+\frac{1}{300}}\right) \cdot 100 \mathrm{~mA}=27.3 \mathrm{~mA} \\
& I_{3}=\left(\frac{\frac{1}{300}}{\frac{1}{100}+\frac{1}{200}+\frac{1}{300}}\right) \cdot 100 \mathrm{~mA}=18.2 \mathrm{~mA}
\end{aligned}
$$

Note that
$\mathrm{I} 1+\mathrm{I} 2+\mathrm{I} 3=100 \mathrm{~mA}$
Current Out $=$ Current In

