Voltage Nodes EE 206 Circuits I

Jake Glower - Lecture \#5

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Voltage Nodes

To solve a circuit, we primarilly use three tools:

- Voltage Nodes (Kirchoff's current law)
- Current Loops (Kirchoff's voltage law)
- Thevenin Equivalents (stay tuned for these...)

The goal of the first two is to obtain N equations so solve for N unknowns.

Voltage Nodes

- The voltages at each node are such that the current from each node sums to zero

Idea:

- I know how to solve N equations for N unknowns
- Math 129 Linear Algebra
- If I can redude the probem to this form, I can solve the problem

Note:

- This is a common theme throughout ECE
- What's important is getting the equations right
- Matlab can solve 50 equations for 50 unknowns just as easily as 2 equations for 2 unkowns
- Focus on getting the equations right.

Example: Find the voltages V1, V2, and V3

- Step 1. Define your ground reference. This is normally the bottom of the diagram.
- Step 2. Label the remaining voltage nodes

The number of unknowns tell you how many equations you need to write

- V1, V2, V3
- We need 3 equations for 3 unknowns

Step 3. Write 3 equations

- Start with the easy ones (the voltage sources)

$$
V_{1}-0=12
$$

- At V2, sum the current from the node to zero

$$
\begin{aligned}
& I_{1}+I_{2}+I_{3}=0 \\
& \left(\frac{V_{2}-V_{1}}{8}\right)+\left(\frac{V_{2}-0}{2}\right)+\left(\frac{V_{2}-V_{3}}{6}\right)=0
\end{aligned}
$$

- At V3, sum the current from the node to zero

$$
\begin{aligned}
& I_{4}+I_{5}+I_{5}=0 \\
& \left(\frac{V_{3}-V_{2}}{6}\right)+\left(\frac{V_{3}-0}{4}\right)+\left(\frac{V_{3}-V_{1}}{10}\right)=0
\end{aligned}
$$

Step 4: Solve

- Group terms

$$
\begin{aligned}
& V_{1}=12 \\
& -\left(\frac{1}{8}\right) V_{1}+\left(\frac{1}{8}+\frac{1}{2}+\frac{1}{6}\right) V_{2}-\left(\frac{1}{6}\right) V_{3}=0 \\
& -\left(\frac{1}{10}\right) V_{1}-\left(\frac{1}{6}\right) V_{2}+\left(\frac{1}{6}+\frac{1}{4}+\frac{1}{10}\right) V_{3}=0
\end{aligned}
$$

- Place in matrix form

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{8} & \left(\frac{1}{8}+\frac{1}{2}+\frac{1}{6}\right) & \left(\frac{-1}{6}\right) \\
\left(\frac{-1}{10}\right) & \left(\frac{-1}{6}\right) & \left(\frac{1}{6}+\frac{1}{4}+\frac{1}{10}\right)
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{c}
12 \\
0 \\
0
\end{array}\right]
$$

Solve using Matlab

```
A = [1,0,0;-1/8,1/8+1/2+1/6,-1/6;-1/10,-1/6,1/6+1/4+1/10]
    1. 0. 0.
    -0.125 0.7916667 - 0.1666667
    -0.1 - 0.1666667 0.5166667
B=[12;0;0]
    12.
    0.
    0.
V = inv(A)*B
V1 12.
V2 2.557377
V3 3.147541
```


CircuitLab (Validation):

You can check your answer using CircuitLab

Example 2: Find V1, V2, and V3

3 unknowns, so write 3 equations for 3 unknowns
Start with the easy ones

$$
\begin{aligned}
& V_{3}-0=2 \\
& V_{1}-V_{3}=10
\end{aligned}
$$

Now we need one more equation. Write the voltage node equation at V 2

$$
\begin{aligned}
& I_{1}+I_{2}+I_{3}=0 \\
& \left(\frac{V_{2}-V_{1}}{4}\right)+(-3)+\left(\frac{V_{2}-V_{3}}{8}\right)=0
\end{aligned}
$$

Group terms

$$
\begin{aligned}
& V_{3}=2 \\
& V_{1}-V_{3}=10 \\
& -\left(\frac{1}{4}\right) V_{1}+\left(\frac{1}{4}+\frac{1}{8}\right) V_{2}-\left(\frac{1}{8}\right) V_{3}=3
\end{aligned}
$$

Place in matrix form:

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -1 \\
-0.25 & 0.375 & -0.125
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
10 \\
3
\end{array}\right]
$$

Solving in Matlab:

$A=[0,0,1 ; 1,0,-1 ;-0.25,0.375,-0.125]$

0	0	1.0000
1.0000	0	-1.0000
-0.2500	0.3750	-0.1250

$B=[2 ; 10 ; 3]$

2
10
3
$V=\operatorname{inv}(A) * B$
V1 12.0000
V2 16.6667
v3 2.0000

Check with CircuitLab

