SuperNodes: EE 206 Circuits I

Jake Glower - Lecture \#6

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

SuperNodes:

- A closed path the encloses $2+$ nodes
- The current coming out of any closed path must sum to zero

Why?

- Sometimes you can't sum the current to zero at each node
- A voltage source is connected to the node
- It supplies whatever current is needed to maintain the voltage
- In that case, use a SuperNode

SuperNode Example:

Find V1, V2, and V3

- Need 3 equations for 3 unknowns

Voltage Source

$$
\begin{equation*}
V_{1}-V_{3}=5 \tag{1}
\end{equation*}
$$

Node V2

$$
\begin{equation*}
\left(\frac{V_{2}-V_{1}}{4}\right)+\left(\frac{V_{2}}{6}\right)+\left(\frac{V_{2}-V_{3}}{8}\right)=0 \tag{2}
\end{equation*}
$$

Now we're stuck.

- We can't sum the current to zero at node V 1 since we don't know the current to the 5 V source
- We can's sum the current to zero at node V3 since we don't know the current into the - terminal of the 5 V soruce
SuperNode:
- Draw a path that encloses the 5 V source and only has resistors attached to it

$$
\begin{equation*}
\left(\frac{V_{1}}{2}\right)+\left(\frac{V_{2}}{6}\right)+\left(\frac{V_{3}}{10}\right)=0 \tag{3}
\end{equation*}
$$

SuperNode

- Another perfectly valid 3rd equation

$$
\left(\frac{V_{1}}{2}\right)+\left(\frac{V_{1}-V_{2}}{4}\right)+\left(\frac{V_{3}}{10}\right)+\left(\frac{V_{3}-V_{2}}{8}\right)=0
$$

Solve:

- Group terms:

$$
\begin{aligned}
& V_{1}-V_{3}=5 \\
& -\left(\frac{1}{4}\right) V_{1}+\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right) V_{2}-\left(\frac{1}{8}\right) V_{3}=0 \\
& \left(\frac{V_{1}}{2}\right)+\left(\frac{V_{2}}{6}\right)+\left(\frac{V_{3}}{10}\right)=0
\end{aligned}
$$

Place in matrix form:

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
-0.25 & 0.5417 & -0.125 \\
0.5 & 0.1666 & 0.1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right]
$$

Solve in Matlab

```
A = [1,0,-1 ; -0.25,0.5417,-0.125 ; 0.5,0.16666,0.1]
    1.0000 0 -1.0000
    -0.2500 0.5417 -0.1250
    0.5000 0.1667 0.1000
B=[5;0;0]
        5
        0
        0
V = inv(A)*B
```

V1	0.9677
V2	-0.4838
V3	-4.0323

Same as CircuitLab

Voltage Nodes with Dependent Sources

- Same as voltage nodes
- Plus one equation for each dependent source

Example: Find V1, V2, V3, Vx

- 4 equations for 4 unknowns

Easy ones:

$$
\begin{aligned}
& V_{x}=V_{3}-V_{2} \\
& V_{1}=12 \\
& V_{3}=4 V_{x}
\end{aligned}
$$

Node equation at V2

$$
\left(\frac{V_{2}-V_{1}}{2}\right)+\left(\frac{V_{2}}{4}\right)+\left(\frac{V_{2}-V_{3}}{6}\right)=0
$$

Solve: Group terms

$$
\begin{aligned}
& V_{x}-V_{3}+V_{2}=0 \\
& V_{1}=12 \\
& V_{3}-4 V_{x}=0 \\
& \left(\frac{-1}{2}\right) V_{1}+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}\right) V_{2}+\left(\frac{-1}{6}\right) V_{3}=0
\end{aligned}
$$

Placing in matrix form

$$
\left[\begin{array}{cccc}
0 & 1 & -1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & -4 \\
-0.5 & 0.9167 & -0.1666 & 0
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
V_{x}
\end{array}\right]=\left[\begin{array}{c}
0 \\
12 \\
0 \\
0
\end{array}\right]
$$

Solve in Matlab

```
A = [0,1,-1,1; 1,0,0,0 ; 0,0,1,-4 ; -0.5,0.9167,-0.1666,0]
\begin{tabular}{rrrr}
0 & 1.0000 & -1.0000 & 1.0000 \\
1.0000 & 0 & 0 & 0 \\
0 & 0 & 1.0000 & -4.0000 \\
-0.5000 & 0.9167 & -0.1666 & 0
\end{tabular}
B = [0;12;0;0]
    0
    1 2
        0
        0
V = inv(A)*B
V1 12.0000
V2 8.6385
V3 11.5180
Vx 2.8795
```

Checking in Circuitlab - the voltages match

SuperNodes and Dependent Sources

- If needed, define a closed-path (i.e. a SuperNode) to give the rest of the N equitions needed Example: Find \{ V1, V2, V3, Ix \}
Easy Equations:

$$
\begin{aligned}
& I_{x}=\left(\frac{V_{1}-V_{2}}{2}\right) \\
& V_{1}=12 \\
& V_{2}-V_{3}=5 I_{x}
\end{aligned}
$$

Define a SuperNode

- Current out of the SuperNode $=0$

$$
\left(\frac{V_{2}-V_{1}}{2}\right)+\left(\frac{V_{2}}{4}\right)+\left(\frac{V_{3}}{6}\right)+\left(\frac{V_{3}-V_{1}}{8}\right)=0
$$

Group Terms

$$
\begin{aligned}
& V_{1}-V_{2}-2 I_{x}=0 \\
& V_{1}=12 \\
& V_{2}-V_{3}-5 I_{x}=0 \\
& \left(\frac{-1}{2}+\frac{-1}{8}\right) V_{1}+\left(\frac{1}{2}+\frac{1}{4}\right) V_{2}+\left(\frac{1}{6}+\frac{1}{8}\right) V_{3}=0
\end{aligned}
$$

Place in matrix form

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & -2 \\
1 & 0 & 0 & 0 \\
0 & 1 & -1 & -5 \\
-0.625 & 0.75 & 0.2917 & 0
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
I_{x}
\end{array}\right]=\left[\begin{array}{c}
0 \\
12 \\
0 \\
0
\end{array}\right]
$$

Solve in Matlab

$$
\begin{aligned}
& A=[1,-1,0,-2 ; 1,0,0,0 ; 0,1,-1,-5 ;-0.625,0.75,0.2917,0] \\
& \begin{array}{rrrr}
1.0000 & -1.0000 & 0 & -2.0000 \\
1.0000 & 0 & 0 & 0 \\
0 & 1.0000 & -1.0000 & -5.0000 \\
-0.6250 & 0.7500 & 0.2917 & 0
\end{array} \\
& B=[0 ; 12 ; 0 ; 0] \\
& 0 \\
& 12 \\
& 0 \\
& 0 \\
& \mathrm{~V}=\operatorname{inv}(\mathrm{A}) * \mathrm{~B} \\
& \text { V1 } 12.0000 \\
& \text { V2 } 9.1764 \\
& \text { V3 } 2.1175 \\
& \text { Ix } \quad 1.4118
\end{aligned}
$$

Verify using Circuitlab

