# Current Loops 

a.k.a. Current Mesh

## EE 206 Circuits I <br> Jake Glower - Lecture \#7

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

## Current Loops

- Current Mesh
- Kirchoff's Current Loops
- Kirchoff's Voltage Law

Goal:

- Write N equations to solve for N unknown currents
- Uses conservation of voltage
- The sum of the voltages around any closed path mush sum to zero
- a.k.a. Kirchoff's Voltage law


## Step 1: Count Windows

- \# of loop equations needed = \# windows
- Not always possible


A circuit with 3 windows (left) and 4 windows (right).

## Step 2: Label Currents

- Path
- Direction

Step 3: Write N equations for N unknowns

- Sum the voltage around each current loop
- Be consistent: Subtract if you hit the - sign first
- Make sure you end up where you started
- The voltages must add up to zero

$$
\begin{aligned}
& -12+\left(I_{1}-I_{3}\right) 8+\left(I_{1}-I_{2}\right) 2=0 \\
& \left(I_{2}-I_{1}\right) 2+\left(I_{2}-I_{3}\right) 6+\left(I_{2}\right) 4=0 \\
& \left(I_{3}-I_{1}\right) 8+\left(I_{3}\right) 10+\left(I_{3}-I_{2}\right) 6=0
\end{aligned}
$$



Note the signs of each term

- When you go arount loop I1
- All of the I1 terms are positive
- All of the other terms are negative
- When you go around loop I2
- All of the I2 terms are positive
- All of the other terms are negative

$$
\begin{aligned}
& -12+\left(I_{1}-I_{3}\right) 8+\left(I_{1}-I_{2}\right) 2=0 \\
& \left(I_{2}-I_{1}\right) 2+\left(I_{2}-I_{3}\right) 6+\left(I_{2}\right) 4=0 \\
& \left(I_{3}-I_{1}\right) 8+\left(I_{3}\right) 10+\left(I_{3}-I_{2}\right) 6=0
\end{aligned}
$$

Also note the units match up


$$
\text { volts }+ \text { volts }+ \text { volts }=0
$$

## Step 4: Solve

Group terms

$$
\begin{aligned}
& 10 I_{1}-2 I_{2}-8 I_{3}=12 \\
& -2 I_{1}+12 I_{2}-6 I_{3}=0 \\
& -8 I_{1}-6 I_{2}+24 I_{3}=0
\end{aligned}
$$

Place in matrix form

$$
\left[\begin{array}{ccc}
10 & -2 & -8 \\
-2 & 12 & -6 \\
-8 & -6 & 24
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{c}
12 \\
0 \\
0
\end{array}\right]
$$

Solve using Matlab:

```
A = [10,-2,-8;-2,12,-6;-8,-6,24]
    10. - 2. - 8.
    - 2. 12. - 6.
    - 8. - 6. 24.
B = [12;0;0]
    12.
    0.
    0.
inv(A)*B
I1 2.0655738
I2 0.7868852
I3 0.8852459
```


## Verification in CircuitLab

In lab, currents are hard to measure

- Fuses blow as soon as someone tries to use an ammeter as a voltmeter
- Also requires inserting an ammeter in series with an element

Easier to measure the voltages and compute the currents

- $\mathrm{V} 1=12.00 \mathrm{~V}$
- $\mathrm{V} 2=2.557 \mathrm{~V}$
- V3 $=3.148 \mathrm{~V}$
so

$$
\begin{aligned}
& I_{3}=\left(\frac{V_{1}-V_{3}}{10}\right)=885.2 \mathrm{~mA} \\
& I_{2}=\left(\frac{V_{3}}{4}\right)=787.0 \mathrm{~mA} \\
& I_{1}-I_{3}=\left(\frac{V_{1}-V_{2}}{8}\right)=1.1804 A
\end{aligned}
$$

Example 2: Find the currents for the 4 -window circuit. Assume Vin $=+12 \mathrm{~V}$.

First, write 4 equations for 4 unknowns:

$$
\begin{aligned}
& 4 I_{1}+8\left(I_{1}-I_{4}\right)+6\left(I_{1}-I_{3}\right)=0 \\
& -12+2 I_{2}+10\left(I_{2}-I_{3}\right)=0 \\
& 10\left(I_{3}-I_{2}\right)+6\left(I_{3}-I_{1}\right)+12\left(I_{3}-I_{4}\right)=0 \\
& 12\left(I_{4}-I_{3}\right)+8\left(I_{4}-I_{1}\right)+14\left(I_{4}\right)=0
\end{aligned}
$$

Group terms:

$$
\begin{aligned}
& 18 I_{1}-6 I_{3}-8 I_{4}=0 \\
& 12 I_{2}-10 I_{3}=12 \\
& -6 I_{1}-10 I_{2}+28 I_{3}-12 I_{4}=0 \\
& -8 I_{1}-12 I_{3}+34 I_{4}=0
\end{aligned}
$$

Place in matrix form:

$$
\left[\begin{array}{cccc}
18 & 0 & -6 & -8 \\
0 & 12 & -10 & 0 \\
-6 & -10 & 28 & -12 \\
-8 & 0 & -12 & 34
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4}
\end{array}\right]=\left[\begin{array}{c}
0 \\
12 \\
0 \\
0
\end{array}\right]
$$

## Solving in MATLAB:

$$
\begin{aligned}
& \text { A }=[18,0,-6,-8 ; 0,12,-10,0 ;-6,-10,28,-12 ;-8,0,-12,34] \\
& B=[0 ; 12 ; 0 ; 0] \\
& \text { inv }(A) * B \\
& \text { I1: } \quad 0.5164104 \\
& \text { I2: } \quad 1.7860913 \\
& \text { I3: } \\
& \text { I4 }: \quad 0.9433096 \\
&
\end{aligned} \quad 0.4544411 .
$$

## From Matlab

$$
\begin{array}{ll}
\text { I1: } & 0.5164104 \\
\text { I2: } & 1.7860913 \\
\text { I3: } & 0.9433096 \\
\text { I4: } & 0.4544411
\end{array}
$$

## From CircuitLab

$$
\begin{aligned}
& I_{1}=\left(\frac{V_{1}-V_{3}}{R_{4}}\right)=0.5165 A \\
& I_{2}=\left(\frac{V_{0}-V_{1}}{R_{1}}\right)=1.7860 A \\
& I_{2}-I_{3}=\left(\frac{V_{1}}{R_{5}}\right)=0.8428 A \\
& I_{4}=\left(\frac{V_{3}}{R_{7}}\right)=0.4544 A
\end{aligned}
$$

## Current Loops with Voltage Sources

Not a problem

- If you encounter the + sign first, add the voltage.
- If you encounter the - sign first, subtract the voltage.

Example: Write 3 equations for 3 unknowns:

$$
\begin{aligned}
& -12+8\left(I_{1}-I_{3}\right)+2\left(I_{1}-I_{2}\right)=0 \\
& 2\left(I_{2}-I_{1}\right)+6+4\left(I_{2}\right)=0 \\
& -10+6+8\left(I_{3}-I_{1}\right)=0
\end{aligned}
$$



