Super Loops

a.k.a. Super Meshes

EE 206 Circuits I

Jake Glower - Lecture #8

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Super-Loops

Current sources cause problems with current loops

- You don't know the voltage across the current source
- You can't sum the voltages to zero

Kirchoff's Voltage Law: The sum of the voltages around any closed path must sum to zero.

- Pick a different closed path to complete N equations for N unknowns
- If this path includes several current loops, the path is called a *SuperLoop*

note: There are usually multiple ways to do this

Example: Find I1 .. I4

- 4 windows
- Write 4 equations for 4 unknowns

Easy one: (current source)

 $I_1 - I_3 = 6$

Loop I2 and I4

$$-12 + 2I_2 + 10(I_2 - I_3) = 0$$
$$12(I_4 - I_3) + 8(I_4 - I_1) + 14(I_4) = 0$$

4th equation???

SuperLoop:

Option 1: $10(I_3 - I_2) + 4(I_1) + 14(I_4) = 0$

Option 2: $10(I_3 - I_2) + 4(I_1) + 8(I_1 - I_4) + 12(I_3 - I_4) = 0$

Both are valid

Solving: Group terms

$$12I_2 - 10I_3 = 12$$

-8I_1 - 12I_3 + 34I_4 = 0
I_1 - I_3 = 6
4I_1 - 10I_2 + 10I_3 + 14I_4 = 0

Put in matrix form:

$$\begin{bmatrix} 0 & 12 & -10 & 0 \\ -8 & 0 & -12 & 34 \\ 1 & 0 & -1 & 0 \\ 4 & -10 & 10 & 14 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 0 \\ 6 \\ 0 \end{bmatrix}$$

Throw into MATLAB and solve

A = [0, 12, -10, 0; -8, 0, -12, 34; 1, 0, -1, 0; 4, -10, 10, 14]

0.	12.	- 10.	0.
- 8.	0.	- 12.	34.
1.	0.	- 1.	0.
4.	- 10.	10.	14.

B = [12;0;6;0]

12. 0. 6. 0.

inv(A)*B

I1	3.5712271
12	-1.0239774
I3	-2.4287729
I4	-0.0169252

Current can be negative. It just means the direction we assumed for 11..14 was wrong.

Note: Some superloops don't work that some paths for the 4th equation are not valid. For example, suppose you use this loop:

$$-12 + 2(I_2) + 10(I_2 - I_3) + 12(I_4 - I_3) + 8(I_4 - I_1) + 14(I_4) = 0$$

This shows up in Matlab as an error

- You do not have 4 linearly independent equations
- Your equations miss the 4 Ohm resistor

```
A = [0,12,-10,0; -8,0,-12,34; 1,0,-1,0; -8,12,-22,34];
B = [12;0;6;12];
I = inv(A)*B
    !--error 19
Problem is singular.
```

Super Loops with Dependent Sources

Dependent sources mean you need extra equations

• One more equation for each dependent source

Example: Find I1..I4

Step 1: Define the currents (shown in red)

Step 2: Determine how many equations you need. There are five unknowns (I1, I2, I3, I4, Vx).

• 5 equations for 5 unknowns.

Step 3: Write the equations

Easy ones:

 $V_x = 12(I_3 - I_4)$ $6V_x = I_1 - I_3$

Loop I2 and I4 $-12 + 2I_2 + 10(I_2 - I_3) = 0$ $12(I_4 - I_3) + 8(I_4 - I_1) + 14(I_4) = 0$

SuperLoop (shown in blue) $10(I_3 - I_2) + 4(I_1) + 14(I_4) = 0$

Step 4: Solve. Group terms:

$$12I_{3} - 12I_{4} - V_{x} = 0$$

$$I_{1} - I_{3} - 6V_{x} = 0$$

$$12I_{2} - 10I_{3} = 12$$

$$-8I_{1} - 12I_{3} + 34I_{4} = 0$$

$$4I_{1} - 10I_{2} + 10I_{3} + 14I_{4} = 0$$

Write these in matrix form

$$\begin{bmatrix} 0 & 0 & 12 & -12 & -1 \\ 1 & 0 & -1 & 0 & -6 \\ 0 & 12 & -10 & 0 & 0 \\ -8 & 0 & -12 & 34 & 0 \\ 4 & -10 & 10 & 14 & 0 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ V_x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 12 \\ 0 \\ 0 \end{bmatrix}$$

Throwing these equations into MATLAB and solve:

;