Super Loops

a.k.a. Super Meshes

EE 206 Circuits I
Jake Glower - Lecture \#8
Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Super-Loops

Current sources cause problems with current loops

- You don't know the voltage across the current source
- You can't sum the voltages to zero

Kirchoff's Voltage Law: The sum of the voltages around any closed path must sum to zero.

- Pick a different closed path to complete N equations for N unknowns
- If this path includes several current loops, the path is called a SuperLoop
note: There are usually multiple ways to do this

Example: Find I1 .. I4

- 4 windows
- Write 4 equations for 4 unknowns

Easy one: (current source)

$$
I_{1}-I_{3}=6
$$

Loop I2 and I4

$$
\begin{aligned}
& -12+2 I_{2}+10\left(I_{2}-I_{3}\right)=0 \\
& 12\left(I_{4}-I_{3}\right)+8\left(I_{4}-I_{1}\right)+14\left(I_{4}\right)=0
\end{aligned}
$$

4th equation???

SuperLoop:
Option 1:
$10\left(I_{3}-I_{2}\right)+4\left(I_{1}\right)+14\left(I_{4}\right)=0$

Option 2:
$10\left(I_{3}-I_{2}\right)+4\left(I_{1}\right)+8\left(I_{1}-I_{4}\right)+12\left(I_{3}-I_{4}\right)=0$

Both are valid

Solving: Group terms

$$
\begin{aligned}
& 12 I_{2}-10 I_{3}=12 \\
& -8 I_{1}-12 I_{3}+34 I_{4}=0 \\
& I_{1}-I_{3}=6 \\
& 4 I_{1}-10 I_{2}+10 I_{3}+14 I_{4}=0
\end{aligned}
$$

Put in matrix form:

$$
\left[\begin{array}{cccc}
0 & 12 & -10 & 0 \\
-8 & 0 & -12 & 34 \\
1 & 0 & -1 & 0 \\
4 & -10 & 10 & 14
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4}
\end{array}\right]=\left[\begin{array}{c}
12 \\
0 \\
6 \\
0
\end{array}\right]
$$

Throw into MATLAB and solve

```
A = [0,12,-10,0; -8,0,-12,34; 1,0,-1,0; 4,-10,10,14]
    0. 12. - 10. 0. 0. 
    1. 0. - 1. 0.
    4. - 10. 10. 14.
B = [12;0;6;0]
    12.
    0.
    6.
    0.
inv(A) *B
I1 3.5712271
I2 -1.0239774
I3 -2.4287729
I4 -0.0169252
```

Current can be negative. It just means the direction we assumed for II..I4 was wrong.

Note: Some superloops don't work that some paths for the 4th equation are not valid. For example, suppose you use this loop:

$$
-12+2\left(I_{2}\right)+10\left(I_{2}-I_{3}\right)+12\left(I_{4}-I_{3}\right)+8\left(I_{4}-I_{1}\right)+14\left(I_{4}\right)=0
$$

This shows up in Matlab as an error

- You do not have 4 linearly independent equations
- Your equations miss the 4 Ohm resistor

```
A = [0,12,-10,0; - 8,0,-12,34; 1,0,-1,0; -8,12,-22,34];
B = [12;0;6;12];
I = inv(A)*B
    !--error 19
Problem is singular.
```


Super Loops with Dependent Sources

Dependent sources mean you need extra equations

- One more equation for each dependent source

Example: Find I1..I4

Step 1: Define the currents (shown in red)

Step 2: Determine how many equations you need. There are five unknowns (I1, I2, I3, I4, Vx).

- 5 equations for 5 unknowns.

Step 3: Write the equations
Easy ones:

$$
\begin{aligned}
& V_{x}=12\left(I_{3}-I_{4}\right) \\
& 6 V_{x}=I_{1}-I_{3}
\end{aligned}
$$

Loop I2 and I4

$$
\begin{aligned}
& -12+2 I_{2}+10\left(I_{2}-I_{3}\right)=0 \\
& 12\left(I_{4}-I_{3}\right)+8\left(I_{4}-I_{1}\right)+14\left(I_{4}\right)=0
\end{aligned}
$$

SuperLoop (shown in blue)

$$
10\left(I_{3}-I_{2}\right)+4\left(I_{1}\right)+14\left(I_{4}\right)=0
$$

Step 4: Solve. Group terms:

$$
\begin{aligned}
& 12 I_{3}-12 I_{4}-V_{x}=0 \\
& I_{1}-I_{3}-6 V_{x}=0 \\
& 12 I_{2}-10 I_{3}=12 \\
& -8 I_{1}-12 I_{3}+34 I_{4}=0 \\
& 4 I_{1}-10 I_{2}+10 I_{3}+14 I_{4}=0
\end{aligned}
$$

Write these in matrix form

$$
\left[\begin{array}{ccccc}
0 & 0 & 12 & -12 & -1 \\
1 & 0 & -1 & 0 & -6 \\
0 & 12 & -10 & 0 & 0 \\
-8 & 0 & -12 & 34 & 0 \\
4 & -10 & 10 & 14 & 0
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4} \\
V_{x}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
12 \\
0 \\
0
\end{array}\right]
$$

12

Throwing these equations into MATLAB and solve:

