Superposition EE 206 Circuits I

Jake Glower - Lecture \#12
Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Superposition

- A circuit composed of resistors, inductors, capacitors, voltage sources, current sources, and dependent sources is a linear system.
- Linear systems have the property

$$
f(a+b)=f(a)+f(b)
$$

Meaning....

- If a circuit has two or more inputs,
- You treat this as two separate circuits, each with just one of the inputs.
- The net voltages (and currents) will be the sum of the separate problems

This is called superposition

Example 1:

$V_{0}=10$
$\left(\frac{V_{1}-V_{0}}{10}\right)+\left(\frac{V_{1}}{100}\right)+\left(\frac{V_{1}-V_{2}}{20}\right)=0$
$\left(\frac{V_{2}-V_{1}}{20}\right)+\left(\frac{V_{2}}{200}\right)+\left(\frac{V_{2}-V_{3}}{30}\right)=0$
$\left(\frac{V_{3}-V_{2}}{30}\right)+\left(\frac{V_{3}}{300}\right)+\left(\frac{V_{3}-V_{4}}{40}\right)=0$
$\left(\frac{V_{4}-V_{3}}{40}\right)+\left(\frac{V_{4}}{400}\right)=0$
$V_{4}=5$

Result

	V 0	V 1	V 2	V 3	V 4
$\mathrm{V} 0=10 \mathrm{~V}$ $\mathrm{~V} 4=5 \mathrm{~V}$	10.00 V	8.42 V	6.95 V	5.78 V	5.00 V

Superposition (take 1):

- $\mathrm{V} 0=$ on
- V4 = off

	V 0	V 1	V 2	V 3	V 4
$\mathrm{V} 0=10 \mathrm{~V}$ $\mathrm{~V} 4=0 \mathrm{~V}$	10.00 V	8.04 V	5.71 V	3.09 V	0.00 V

Superpositon (take 2)

- V0 = off
- V4 = on

	V0	V1	V2	V3	V4
$\mathrm{V} 0=0 \mathrm{~V}$ $\mathrm{~V} 4=5 \mathrm{~V}$	0.00 V	0.386 V	1.24 V	2.69 V	5.00 V

Superposition (take 3)

Note that the voltages add up

	V 0	V 1	V 2	V 3	V 4
$\mathrm{V} 0=10 \mathrm{~V}$, $\mathrm{V} 4=0 \mathrm{~V}$	10.00 V	8.04 V	5.71 V	3.09 V	0.00 V
$\mathrm{V} 0=0 \mathrm{~V}$ $\mathrm{~V} 4=5 \mathrm{~V}$	0.00 V	0.386 V	1.24 V	2.69 V	5.00 V
$\mathrm{V} 0=10 \mathrm{~V}$ $\mathrm{~V} 4=5 \mathrm{~V}$	10.00 V	8.42 V	6.95 V	5.78 V	5.00 V

Example 2: R-2R Ladder.

Determine Y as a funciton of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D
By superposition, we know that

$$
Y=a A+b B+c C+d D
$$

Case 1: $\mathrm{A}=1, \mathrm{~B}=\mathrm{C}=\mathrm{D}=0$.

- Take the Thevenin equivalent of the circuit looking left at x. All you see is $2 R \| 2 R=R$ to ground.
- Repeat at y. All you see is $2 R \| 2 R=R$ to ground.
- Repeat at z . All you see is $2 \mathrm{R} \| 2 \mathrm{R}=\mathrm{R}$ to ground.
- By voltage division, $\mathrm{Y}=1 / 2$ volt.
$a=1 / 2$

Case 2: $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=\mathrm{D}=0$.

- At w looking left, all you see is $2 R \| 2 R=R$
- At x looking left, all you see is $2 R \| 2 R=R$
- At y looking left, all you get

$$
-\mathrm{Rth}=2 \mathrm{R} \| 2 \mathrm{R}=\mathrm{R} \quad \mathrm{~V} \text { th }=1 / 2 \mathrm{~V}
$$

- At z looking left, you get

$$
-\mathrm{Rth}=2 \mathrm{R} \| 2 \mathrm{R}=\mathrm{R} \quad \mathrm{Vth}=1 / 2 * 1 / 2=1 / 4
$$

$$
\mathrm{b}=1 / 4
$$

Case 3: $\mathrm{A}=\mathrm{B}=\mathrm{D}=0 . \mathrm{C}=1$.

- Taking the Thevenin equivalents looking left, you wind up with
- $\quad \mathrm{Y}=1 / 8 \mathrm{~V} \quad(\mathrm{c}=1 / 8)$

The net result is

$$
Y=\left(\frac{1}{2}\right) A+\left(\frac{1}{4}\right) B+\left(\frac{1}{8}\right) C+\left(\frac{1}{16}\right) D
$$

- This circuit converts a binary number into an analog voltage

Example 3: Weighted Average

Case 1: Design a circuit so that Y is the average of $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$

$$
Y=\left(\frac{A+B+C}{3}\right)
$$

By symmetry, use three resistors:

$$
\begin{aligned}
& \left(\frac{Y-A}{R}\right)+\left(\frac{Y-B}{R}\right)+\left(\frac{Y-C}{R}\right)=0 \\
& 3 Y=A+B+C \\
& Y=\left(\frac{A+B+C}{3}\right)
\end{aligned}
$$

Case 2: Design a circuit so that Y is the weighted average:

$$
Y=\left(\frac{2 A+B+C}{4}\right)
$$

Solution: Add A twice. This is equivalent to reducing R by 2 :

Case 3: Design a circuit to implement

$$
Y=\left(\frac{a A+b B+c C}{a+b+c}\right)
$$

Solution:

Y is the weighted average of A, B, C

Example: Level Shifting

- Let A be an analog signal in the range of $(-10 \mathrm{~V},+10 \mathrm{~V})$

Design a circuit to shift this voltage to the range of $0 . .5 \mathrm{~V}$.

Solution: Y is related to A as

$$
Y=\frac{1}{4} A+2.5
$$

Rewrite as

$$
\begin{aligned}
& Y=\frac{1}{4} A+\frac{1}{2}(5 V)+\frac{1}{4}(0 V) \\
& Y=\left(\frac{1 \cdot(A)+2(5 V)+1 \cdot(0 V)}{4}\right)
\end{aligned}
$$

