Superposition EE 206 Circuits I Jake Glower - Lecture #12

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Superposition

- A circuit composed of resistors, inductors, capacitors, voltage sources, current sources, and dependent sources is a linear system.
- Linear systems have the property

f(a+b) = f(a) + f(b)

Meaning....

- If a circuit has two or more inputs,
- You treat this as two separate circuits, each with just one of the inputs.
- The net voltages (and currents) will be the sum of the separate problems

This is called *superposition*

Example 1:

Result

	V0	V1	V2	V3	V4
V0 = 10V V4 = 5V	10.00 V	8.42 V	6.95 V	5.78 V	5.00 V

Superposition (take 1):

- V0 = on
- V4 = off

	V0	V1	V2	V3	V4
V0 = 10V V4 = 0V	10.00V	8.04 V	5.71 V	3.09 V	0.00 V

Superpositon (take 2)

- V0 = off
- V4 = on

	V0	V1	V2	V3	V4
V0 = 0V V4 = 5V	0.00 V	0.386 V	1.24 V	2.69 V	5.00 V

Superposition (take 3)

Note that the voltages add up

	V0	V1	V2	V3	V4
V0 = 10V, V4 = 0V	10.00V	8.04 V	5.71 V	3.09 V	0.00 V
V0 = 0V V4 = 5V	0.00 V	0.386 V	1.24 V	2.69 V	5.00 V
V0 = 10V V4 = 5V	10.00 V	8.42 V	6.95 V	5.78 V	5.00 V

Example 2: R-2R Ladder.

Determine Y as a funciton of A, B, C, and D By superposition, we know that Y = aA + bB + cC + dD

> R 2R R R - Y(A,B,C,D)2R 2R 2R 2R В D С А ()(f) \bigcirc \cap

Case 1: A = 1, B = C = D = 0.

- Take the Thevenin equivalent of the circuit looking left at x. All you see is $2R \parallel 2R = R$ to ground.
- Repeat at y. All you see is $2R \parallel 2R = R$ to ground.
- Repeat at z. All you see is $2R \parallel 2R = R$ to ground.
- By voltage division, Y = 1/2 volt.

a = 1/2

Case 2: A = 0, B = 1, C = D = 0.

- At w looking left, all you see is $2R \parallel 2R = R$
- At x looking left, all you see is $2R \parallel 2R = R$
- At y looking left, all you get
 - $-Rth = 2R \parallel 2R = R \qquad Vth = 1/2 V$
- At z looking left, you get
 - $Rth = 2R \parallel 2R = R$ Vth = 1/2 * 1/2 = 1/4

b = 1/4

Case 3: A = B = D = 0. C = 1.

• Taking the Thevenin equivalents looking left, you wind up with

$$Y = 1/8 V$$
 ($c = 1/8$)

The net result is

$$Y = \left(\frac{1}{2}\right)A + \left(\frac{1}{4}\right)B + \left(\frac{1}{8}\right)C + \left(\frac{1}{16}\right)D$$

• This circuit converts a binary number into an analog voltage

Example 3: Weighted Average

Case 1: Design a circuit so that Y is the average of { A, B, C } $Y = \left(\frac{A+B+C}{3}\right)$

0

By symmetry, use three resistors:

$$\left(\frac{Y-A}{R}\right) + \left(\frac{Y-B}{R}\right) + \left(\frac{Y-C}{R}\right) =$$
$$3Y = A + B + C$$
$$Y = \left(\frac{A+B+C}{3}\right)$$

Case 2: Design a circuit so that Y is the weighted average: $Y = \left(\frac{2A+B+C}{4}\right)$

Solution: Add A twice. This is equivalent to reducing R by 2:

Case 3: Design a circuit to implement $Y = \left(\frac{aA+bB+cC}{a+b+c}\right)$

Solution:

Y is the weighted average of A, B, C

Example: Level Shifting

• Let A be an analog signal in the range of (-10V, +10V)

Design a circuit to shift this voltage to the range of 0..5V.

Solution: Y is related to A as

$$Y = \frac{1}{4}A + 2.5$$

Rewrite as

$$Y = \frac{1}{4}A + \frac{1}{2}(5V) + \frac{1}{4}(0V)$$

$$Y = \left(\frac{1 \cdot (A) + 2(\cdot 5V) + 1 \cdot (0V)}{4}\right)$$

