Operational Amplifiers EE 206 Circuits I

Jake Glower - Lecture \#13
Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Operational Amplifiers

An operational amplifier is a 2-input device with

$$
V_{o} \approx k\left(V^{+}-V^{-}\right)
$$

where k is a large number. For short, the following symbol is used for an differential amplifier:

Symbol for an operational amplifier (op-amp)

Operational Amplifier Characteristics

	LM741	LM833	Ideal
Input Resistance	2 M Ohms	4 G Ohms	infinite
Output Resistance	75 Ohms	20 Ohms	0
Output Short Circuit Current:	25 mA	50 mA	infinite
Operating Voltage	$+/-12 \mathrm{~V} . .+/-22 \mathrm{~V}$	$+/-2.5 \mathrm{~V} . .+/-15 \mathrm{~V}$	any
Diffential Mode Gain	200,000	100,000	infinite
Common Mode Rejection Ratio	90 dB	100 dB	common mode gain $=0$
Slew Rate	$0.5 \mathrm{~V} / \mathrm{us}$	$7 \mathrm{~V} / \mathrm{us}$	infinite
Gain Bandwidth Product	1.5 MHz	15 MHz	infinite
Price (qty 100)	$\$ 0.35$	$\$ 0.52$	-

Translation

Input Resistance: The Thevenin equivalent of the op-amp at $\mathrm{V}+$ and V Short Circuit Current: The maximum current you can get
Operating Voltage: What you need to make it work
Differential Mode Gain: The gain from (V+-V-) to the output
Slew Rate: How fast the output can change.
Gain Bandwidth Product $=1.5 \mathrm{MHz}$:

- If you want a gain of one, the bandwidth is 1.5 MHz
- If you want a gain of 10 , the bandwidth is 150 kHz .
- etc.

Operational Amplifier Circuit Analysis

Problem: Write the voltage node equations for the following circuit. Assume (a) a LM741 op amp. (b) an ideal op-amp.

Figure 2: Find Vo for this op-amp circuit

741 Op Amp Analysis:

First, replace the op-amp with a model taking into account the input, output resistance and gains:

$$
\begin{aligned}
& V_{p}=0 \\
& \left(\frac{V_{m}-1 V}{1 k}\right)+\left(\frac{V_{m}}{2 M}\right)+\left(\frac{V_{m}-V_{x}}{10 k+75}\right)=0 \\
& V_{x}=-199,994 V_{m}
\end{aligned}
$$

Solving

- $\mathrm{Vp}=0.0000000 \mathrm{~V}$
- $\mathrm{Vm}=0.000050 \mathrm{~V}$

- $\mathrm{Vo}=-9.999940 \mathrm{~V}$

Ideal Op Amp:

Note that many of the terms don't affect the output all that much:

- $2 M \Omega \| 1 k \Omega \approx 1 k \Omega$
- $0.0000504 \mathrm{~V} \approx 0 \mathrm{~V}$

If you approximate these terms, you're essentially using an ideal-op amp.
This is much easier to analyze

$$
\begin{aligned}
& V_{p}=0 \\
& V_{p}=V_{m} \\
& \left(\frac{V_{m}-1 V}{1 k}\right)+\left(\frac{V_{m}-V_{o}}{10 k}\right)=0
\end{aligned}
$$

which gives

$$
V_{o}=-10.000 \mathrm{~V}
$$

Note:

- When analyzing an op-amp circuit, you almost have to use voltage nodes.
- If assuming an ideal op-amp, the voltage node equation at Vo is

$$
V_{p}=V_{m}
$$

Example 2: Find V1..V4

- Assume ideal op-amps

$$
V_{p}=V_{m}
$$

meaning

$$
\begin{aligned}
& V_{1}=2 V \\
& V_{3}=2 V \\
& \left(\frac{V_{1}-3}{100 k}\right)+\left(\frac{V_{1}-V_{2}}{100 k}\right)=0
\end{aligned}
$$

$$
\left(\frac{V_{3}-V_{2}}{100 k}\right)+\left(\frac{V_{3}-1}{20 k}\right)+\left(\frac{V_{3}-V_{4}}{100 k}\right)=0
$$

Solving gives V1 $=2.00 \mathrm{~V}, \mathrm{~V} 2=1.00 \mathrm{~V}, \mathrm{~V} 3=2.00 \mathrm{~V}, \mathrm{~V} 4=8.00 \mathrm{~V}$

- Same as CircuitLab

Example 3: Assume ideal op-amps. Find the node voltages.

$$
V_{1}=2
$$

$$
V_{3}=2
$$

$$
\left(\frac{V_{1}}{1 k}\right)+\left(\frac{V_{1}-V_{2}}{2 k}\right)=0
$$

$$
\left(\frac{V_{3}-V_{2}}{3 k}\right)+\left(\frac{V_{3}-V_{4}}{4 k}\right)=0
$$

Solving	
V1	2.0000
V2	6.0000
V3	3.0000
V4	-1.0000

Same as CircuitLab

