Capacitors \& The Heat Equation EE 206 Circuits I

Jake Glower - Lecture \#17
Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Capacitors

A capacitor is a set of parallel plates ${ }^{1}$ with the capacitance equal to

$$
C=\varepsilon \frac{A}{d} \text { (Farads) }
$$

where

- ε is the dielectric constant of the material between plates ($\mathrm{air}=8.84 \cdot 10^{-12}$)
- A is the area of the capacitor, and
- d is the distance between plates.

The area you need for 1 Farad with plates 1 mm apart is

$$
\begin{aligned}
& 1=\left(8.84 \cdot 10^{-12}\right) \frac{A}{0.001 m} \\
& A=113,122,171 m^{2}
\end{aligned}
$$

Equal to $10.6 \mathrm{~km} \times 10.6 \mathrm{~km}$

- Most capacitors on the order of μF or $n F$

The charge stored is

$$
Q=C \cdot V
$$

$\mathrm{Q}=$ charge (Coulombs - one Coulomb is equal to $6.242 \cdot 10^{18}$ electrons).

Voltage - Current Relationship

$$
\begin{aligned}
& Q=C V \\
& I=\frac{d Q}{d t}=C \frac{d V}{d t}+V \frac{d C}{d t}
\end{aligned}
$$

Assuming the capacitance is constant

$$
I=C \frac{d V}{d t}
$$

This means that capacitors are integrators:

$$
V=\frac{1}{C} \int I \cdot d t
$$

Capacitors and Energy Storage

The energy stored is

- $E=\frac{1}{2} C V^{2}$
- $12.5 \mathrm{~J}=12.5 \mathrm{~kW}$ for 1 ms
- Capacitors provide energy for short bursts

Item	Energy (Joules)	Cost	$\$ / \mathrm{MJ}$
1 pound Wyoming Coal	$3,600,000$	$\$ 0.028$	$\$ 0.0078$
1 pound ND Lignite	$1,565,217$	$\$ 0.017$	$\$ 0.0108$
1 pint of gasoline	$15,000,000$	$\$ 0.37$	$\$ 0.0247$
Lithium battery (D cell)	246,240	$\$ 22$	$\$ 89.43$
1F Capacitor (5V)	12.5	$\$ 2.87$	$\$ 229,600$

Numerical Integration and Capacitors

Capacitors are inherently integrators:

$$
\begin{aligned}
& I=C \frac{d V}{d t} \\
& V=\frac{1}{C} \int I d t
\end{aligned}
$$

Differential equations are required to described circuits with capacitors

- Each capacitor adds a 1st-order differential equation
- N capacitors means an Nth-order differential equation

Calculus: Solving differtial equations using calculus
Circuits I: Solving differetial equations using phasors (coming soon) and numerical methods
Circuits II, Signals \& Systems: Solving differential equtions using LaPlace transforms

Numerical Integration

- Solve a differential equation using numerical methods (i.e. Matlab)
- Whole field of mathematics deals with numerical integration

Several types of numerical integration

- Euler Integration
- Trapezoid Rule
- Runge Kutta Integration
- more...

All are approximate

- Use Calculus or LaPlace transforms to get closed-form, exact solutions

Euler Integration

- $y(t)=y(t-T)+x(t) \cdot d t$
- Sample x(t) every T seconds,
- Use rectangles to approximate the area every T seconds, and
- Sum up the area of each rectangle.

Result is the simplest and least accurate of the three forms.

- Not too bad if you keep the sampling time (dt) small.

Trapezoid (Bilinear) Integration:

- $y(t)=y(t-T)+\left(\frac{x(t)+x(t-T)}{2}\right) \cdot d t$
- Sample x(t) every T seconds,
- Use trapezoids to approximate the area every T seconds
- Much better than Euler
- Required memory (need to recall previous input)

Runge Kutta Integration:

- Sample x(t) every T seconds,
- Use parabola, cubics, etc. to approximate the area
- Required memory and data inbetween samples

Stick with Euler integration
To find the voltage across a capacitor

- Compute the current to the capacitor, and
- Integrate using Euler integration:

```
dV = I / C
V = V + dV * dt
```


Example 1: 1-Stage RC Circuit

Find V1(t) with

$$
V_{0}(t)=10 u(t)=\left\{\begin{array}{cc}
0 V & t<0 \\
10 V & t>0
\end{array}\right.
$$

Solution

$$
\begin{aligned}
& I_{c}=I_{a}+I_{b} \\
& C \frac{d V_{1}}{d t}=I_{c}=\left(\frac{V_{0}-V_{1}}{2}\right)+\left(\frac{0-V_{1}}{100}\right) \\
& \frac{d V_{1}}{d t}=-5.1 V_{1}+5 V_{0}
\end{aligned}
$$

Solve in Matlab

\% 1-stage RC Filter
$\mathrm{V}=0$;
$\mathrm{VO}=10$;
$d t=0.01 ;$
$\mathrm{t}=0$;
Y = [];
while(t < 1)
$\mathrm{dV}=-5.1 * \mathrm{~V}+5 * \mathrm{~V} 0$;
$V=V+d V * d t ;$
$t=t+d t ;$
$\mathrm{Y}=[\mathrm{Y} ; \mathrm{V}]$;
end
$t \quad=[1: l e n g t h(Y)] '$ * $d t ;$
plot(t, Y);

Solve in CircuitLab

- V1 $=10 \mathrm{~V}$ square wave, $0.1 \mathrm{~Hz}, 0.1$ degree phase shift
- Run a time-domain simulation for 1 second
- Gives the same answer
- CircuitLab also solves using numerical integration

Example 2: 3-Stage RC Filter

$V_{0}(t)=10 u(t)$
$C_{1} \frac{d V_{1}}{d t}=I_{1}=\left(\frac{V_{0}-V_{1}}{2}\right)+\left(\frac{0-V_{1}}{100}\right)+\left(\frac{V_{2}-V_{1}}{2}\right)$
$C_{2} \frac{d V_{2}}{d t}=I_{2}=\left(\frac{V_{1}-V_{2}}{2}\right)+\left(\frac{0-V_{2}}{100}\right)+\left(\frac{V_{3}-V_{2}}{2}\right)$
$C_{3} \frac{d V_{3}}{d t}=I_{3}=\left(\frac{V_{2}-V_{3}}{2}\right)+\left(\frac{0-V_{3}}{100}\right)$

Next, determine dV/dt

$$
\begin{aligned}
& \frac{d V_{1}}{d t}=5 V_{0}-10.1 V_{1}+5 V_{2} \\
& \frac{d V_{2}}{d t}=5 V_{1}-10.1 V_{2}+5 V_{3} \\
& \frac{d V_{3}}{d t}=5 V_{2}-5.1 V_{3}
\end{aligned}
$$

In Matlab:

```
V0 = 10;
\(\mathrm{V} 1=0 ; \mathrm{V} 2=0 ; \mathrm{V} 3=0\);
dt = 0.01;
t \(=0\);
\(Y=[] ;\)
```

while(t < 4)
$\mathrm{dV} 1=5 * \mathrm{~V} 0-10.1 * \mathrm{~V} 1+5 * \mathrm{~V} 2$;
$\mathrm{dV} 2=5 * \mathrm{~V} 1-10.1 * \mathrm{~V} 2+5 * \mathrm{~V} 3 ;$
$\mathrm{dV} 3=5 * \mathrm{~V} 2-5.1 * \mathrm{~V} 3$;
$\mathrm{V} 1=\mathrm{V} 1$ + dV1 * dt;
$\mathrm{V} 2=\mathrm{V} 2+\mathrm{dV} 2$ * $d t ;$
V3 $=\mathrm{V} 3$ + dV3 * dt;
$t=t+d t ;$
Y = [Y ; [V1, V2, V3]];
end
t = [1:length(Y)]' * dt;
plot(t, Y);

Case 3: 10-Stage RC Filter: Heat Equation

$$
\begin{array}{ll}
\frac{d V_{n}}{d t}=5 V_{n-1}-10.1 V_{n}+5 V_{n+1} & 1<\mathrm{n}<9 \\
\frac{d V_{10}}{d t}=5 V_{9}-5.1 V_{10} &
\end{array}
$$

In Matlab, use a for-loop:
\% 10-stage RC Filter

```
V0 = 10;
V = zeros(10,1);
dV = 0*V;
dt = 0.01;
    t = 0;
    Y = [];
```

```
while(t < 10)
    dV(1) = 5*V0 -10.1*V(1) + 5*V(2);
    for i=2:9
        dV(i) = 5*V(i-1) - 10.1*V(i) + 5*V(i+1);
    end
    dV(10) = 5*V(9) - 5.1*V(10);
    V = V + dV * dt;
    t = t + dt;
    N = [0:10];
    plot(N, [V0; V], 'b.-');
    ylim([0,10]);
    pause(0.01);
```

For the first 10 seconds, this program shows the voltages along the circuit

Then, the final voltages vs. time are displayed

Note: This program

- Solves a 10 -order compled differential equation
- V1..V10 represent the voltages on each capacitor as they charge
- V1..V10 also are the temperatures along a metal bar as they heat up

Coupled 1st-order differential equtions

- Describe RC circuits
- Describe heat flow
- Are called the heat equation

Eigenvalues and Eigenvectors

The dynamics for the 10 -stage RC filter are:

$$
\begin{aligned}
& \frac{d V_{1}}{d t}=\dot{V}_{1}=5 V_{0}-10.1 V_{1}+5 V_{2} \\
& \frac{d V_{2}}{d t}=\dot{V}_{2}=5 V_{1}-10.1 V_{2}+5 V_{3} \\
& \vdots \\
& \frac{d V_{9}}{d t}=\dot{V}_{9}=5 V_{8}-10.1 V_{9}+5 V_{10} \\
& \frac{d V_{10}}{d t}=\dot{V}_{10}=5 V_{9}-5.1 V_{10}
\end{aligned}
$$

In matrix form, this can be written as

$$
\dot{V}=A V+B V_{0}
$$

or

$$
\left[\begin{array}{l}
\dot{V}_{1} \\
\dot{V}_{2} \\
\dot{V}_{3} \\
\dot{V}_{4} \\
\dot{V}_{5} \\
\dot{V}_{6} \\
\dot{V}_{7} \\
\dot{V}_{8} \\
\dot{V}_{9} \\
\dot{V}_{10}
\end{array}\right]=\left[\begin{array}{ccccccccc}
-10.1 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & -10.1 & 5 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 5 & -10.1 & 5 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 5 & -10.1 & 5 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 5 & -10.1 & 5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 5 & -10.1 & 5 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 5 & -10.1 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 5 & -10.1 & 5 \\
0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 & -10.1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
-5.1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5} \\
V_{6} \\
V_{7} \\
V_{8} \\
V_{9} \\
V_{10}
\end{array}\right]+\left[\begin{array}{l}
5 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Matrix A is a 10×10 matrix:

```
A = zeros (10,10);
for \(i=1: 9\)
    A(i,i) \(=-10.1\);
    \(A(i, i+1)=5 ;\)
    \(A(i+1, i)=5 ;\)
    end
\(A(10,10)=-5.1 ;\)
```

$A=$

-10.1000	5.0000	0	0	0	0	0	0	0	0
5.0000	-10.1000	5.0000	0	0	0	0	0	0	0
0	5.0000	-10.1000	5.0000	0	0	0	0	0	0
0	0	5.0000	-10.1000	5.0000	0	0	0	0	0
0	0	0	5.0000	-10.1000	5.0000	0	0	0	0
0	0	0	0	5.0000	-10.1000	5.0000	0	0	0
0	0	0	0	0	5.0000	-10.1000	5.0000	0	0
0	0	0	0	0	0	5.0000	-10.1000	5.0000	0
0	0	0	0	0	0	0	5.0000	-10.1000	5.0000
0	0	0	0	0	0	0	0	5.0000	-5.1000

A has 10 eigenvalues and 10 eigenvectors:

[$\mathrm{M}, \mathrm{V}]=$ eig (A)									
$\mathrm{M}=$ Eigenvectors:									
-0.1286	-0.2459	0.3412	0.4063	0.4352	0.4255	0.3780	0.2969	-0.1894	0.0650
0.2459	0.4063	-0.4255	-0.2969	-0.0650	0.1894	0.3780	0.4352	-0.3412	0.1286
-0.3412	-0.4255	0.1894	-0.1894	-0.4255	-0.3412	-0.0000	0.3412	-0.4255	0.1894
0.4063	0.2969	0.1894	0.4352	0.1286	-0.3412	-0.3780	0.0650	-0.4255	0.2459
-0.4352	-0.0650	-0.4255	-0.1286	0.4063	0.1894	-0.3780	-0.2459	-0.3412	0.2969
0.4255	-0.1894	0.3412	-0.3412	-0.1894	0.4255	0.0000	-0.4255	-0.1894	0.3412
-0.3780	0.3780	-0.0000	0.3780	-0.3780	0.0000	0.3780	-0.3780	-0.0000	0.3780
0.2969	-0.4352	-0.3412	0.0650	0.2459	-0.4255	0.3780	-0.1286	0.1894	0.4063
-0.1894	0.3412	0.4255	-0.4255	0.3412	-0.1894	0.0000	0.1894	0.3412	0.4255
0.0650	-0.1286	-0.1894	0.2459	-0.2969	0.3412	-0.3780	0.4063	0.4255	0.4352
$\mathrm{V}=$ Eigenvalues:									
-19.6557	-18.3624	-16.3349	-13.7534	-10.8473	-7.8748	-5.1000	-2.7695	-1.0903	-0.2117

The eigenvalues tell you how the mode behaves
The eigenvector tells you what behaves that way.

Slow Eigenvector

- $\mathrm{V} 0=0$
- $\mathrm{V}(0)=$ slow eigenvector
- $V(t)=V_{0} e^{-0.2117 t}$

Fast Eigenvector

- V0 = 0
- $\mathrm{V}(0)=$ fast eigenvector
- $V(t)=V_{0} e^{-19.65 t}$

Voltages plotted every 0.05 seconds when the initial condition is the fast eigenvector

Random Initial Condition

- All eigenvectors will be excited
- The fast ones quickly decay,
- Leaving the slow eigenvector

