Sinusoidal Sources

EE 206 Circuits I Jake Glower

03/18/20

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

What Is a Sine Wave?

Circles and Sine Waves: If you take a wheel and spin it counter clockwise,

- The x-position of a point on the wheel maps out a cosine function, and
- The y-poisition of a point maps out a sine function

plotting x vs. y where $\mathrm{x}=\cos (\mathrm{q}) \mathrm{y}=\sin (\mathrm{q})$ produces the unit circle

If you plot $\cos (q)$ vs. $\sin (q)$, you get the unit circle

```
q = [0:0.001:1]' * 2 * pi;
x = cos(q);
y = sin(q);
plot(cos(q), sin(q))
```


$$
r=\cos \theta, \quad r=\sin \theta \quad \text { also gives you circles }
$$

Natural Response to Differential Equations:

The natural response to a linear 2 nd-order differential equation

$$
\frac{d^{2} y}{d t^{2}}+\omega^{2} y=0
$$

is a sine wave:

$$
y(t)=a \cos (\omega t)+b \sin (\omega t)
$$

Why Use Sine Waves?

- Sine waves is sine waves are eigenfunctions
- You can decompose any periodic signal into a sum of sine waves

Eigenfunctions: The solution to a differential equation (i.e. a circuit) is the same as the forcing function.

Example:

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}+2 y=2 x \\
& x(t)=\cos (2 t)
\end{aligned}
$$

Solution: (stay tuned...)

$$
y(t)=-0.1 \cos (2 t)+0.3 \sin (2 t)
$$

Only sine waves (and exponentials) have this property.

- Square waves don't
- Triangle waves don't
- Sawtooth waves don't

Fourier Transform: (Covered in ECE 311 Circuits II)

If a function is periodic in time T

$$
x(t)=x(t+T)
$$

it can be expressed as a sum of sine waves. Example: a half-rectified sine wave

$$
x(t)=\left\{\begin{array}{cl}
\sin (t) & \sin (t)>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

can be expressed as the series

$$
x(t)=\frac{1}{\pi}+\frac{1}{2} \sin (t)+\sum_{n \text { even }}\left(\frac{2}{\pi\left(n^{2}-1\right)}\right) \cos (n t)
$$

Sine Wave Definitions

To alleviate some of the confusion, some definitions are needed.

- Vp: Peak Voltage: The amplitude of the sine wave from it's average voltage (usually zero).
- Vpp: Peak to Peak Voltage: The distance between the maximum and minimum voltage. Vpp= 2 Vp
- Vrms: rms Voltage: The DC votlage which would produce the same amount of heat through a 1 Ohm resistor.

- Period (seconds): Time time between zero crossings (or peak votlages)
- Frequency (Hz): One over the period
- Frequency (rad/sec): The natural frequency: $1 \mathrm{~Hz}=2 \pi \mathrm{rad} / \mathrm{sec}$.

