Complex Numbers
 EE 206 Circuits I

Jake Glower

03/18/20

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Objective:

- Become familiar with using complex numbers for addition, subtraction, multiplication, and division

The number Zero:

- Zero is an odd concept: something that represents nothing
- Zero isn't needed: the Romans had an extensive economy without the number zero.
- Without zero, addition becomes difficult.
- Without zero, multiplication becomes difficult

	MXXIII
+	CVI
$=$	$?$

	MXXIII
$*$	CVI
$=$	$?$

Negative Numbers:

- Negative numbers are even more starange
- Their invention allowed Holland to become a world power

By keep tracking of credits (+) and debits (-), the double-entry book-keeping system allowed Dutch merchants to understand what ventures were profitable and which were not.

Complex Numbers

To solve differential equations (i.e. circuits) with sinudoidal inputs

- Solve 2 N equations for 2 N unknowns
- Using sine() and cosine() functions
- Solve N equations for N unknowns
- Using complex numbers

Definition of Complex Numbers

Two basic definitions for complex numbers are

$$
\begin{aligned}
& j^{2}=-1 \\
& e^{j \theta}=\cos (\theta)+j \sin (\theta)
\end{aligned}
$$

Polar and Rectangular Form:

A complex number can be represented in rectangular or polar form

$$
x+j y \quad r \cdot e^{j \theta}=r \angle \theta
$$

The relationship is

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \tan (\theta)=\frac{y}{x}
\end{aligned}
$$

or

$$
\begin{aligned}
& x=r \cdot \cos (\theta) \\
& y=r \cdot \sin (\theta)
\end{aligned}
$$

Addition

Add real to real, complex to complex

$$
\begin{array}{r}
4+j 2 \\
+\quad 1+j 3 \\
=\quad 5+j 5
\end{array}
$$

Subtraction:

Subtract real from real, complex from complex
$5+j 5$

- $1+j 3$
$=4+j 2$

Multiplication

Rectangular Form:

$$
\begin{aligned}
& (2+j 3)(4+j 5)=(2 \cdot 4)+(2 \cdot j 5)+(j 3 \cdot 4)+(j 3 \cdot j 5) \\
& =(8)+(j 10)+(j 12)+\left(j^{2} 15\right)
\end{aligned}
$$

Note that $\mathrm{j} 2=-1$:

$$
\begin{aligned}
& =(8-15)+j(10+12) \\
& =-7+j 22
\end{aligned}
$$

Multiplication is easier in polar form:

$$
\begin{aligned}
& (a \angle \theta)(b \angle \phi)=a b \angle(\theta+\phi) \\
& \left(a \cdot e^{j \theta}\right)\left(b \cdot e^{j \phi}\right)=a b \cdot e^{j(\theta+\phi)}
\end{aligned}
$$

Complex Conjugates:

The complex conjugate (symbol *) is

$$
(x+j y)^{*}=x-j y
$$

A number multiplied by its complex conjugate is

- The real squared, plus
- The imaginary squared

$$
\begin{aligned}
& (x+j y)(x-j y)=\left(x^{2}+j x y-j x y-j^{2} y\right) \\
& \quad=x^{2}+y^{2}
\end{aligned}
$$

Division

Polar Form

$$
\left(\frac{a \angle \theta}{b \angle \phi}\right)=\left(\frac{a}{b}\right) \angle(\theta-\phi)
$$

Rectangular Form

$$
\begin{gathered}
\left(\frac{a+j b}{c+j d}\right)=\left(\frac{a+j b}{c+j d}\right)\left(\frac{c-j d}{c-j d}\right) \\
=\left(\frac{a c-b d+j b c-j a d}{c^{2}+d^{2}}\right) \\
=\left(\frac{a c-b d}{c^{2}+d^{2}}\right)+j\left(\frac{b c-a d}{c^{2}+d^{2}}\right)
\end{gathered}
$$

HP Calculators

I strongly recommend getting an HP calculator

- HP35s: $\$ 52$ on Amazon
- Free42: free app for the HP42 (great calculator)

You will be using complex numbers extensively in Electrical and Computer engineering.
Get a calculator that does complex numbers
I've found that HP calculators are worth about 10 points on midterms (they breeze through complex math)

