## Phasor Voltages

## EE 206 Circuits I

## Jake Glower

## 03/18/20

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

## Objective:

- Represent a sinusoid with a single complex number
- Express a sinusoid as seen on an oscilloscope as a complex number (a phasor)
- Determine the gain of a system from it's oscilloscope traces



## Phasor Voltages:

A generic sinusoid at frequency w can be written as

$$
x(t)=a \cos (\omega t)+b \sin (\omega t)
$$

or

$$
x(t)=r \cos (\omega t+\theta)
$$

Note that to represent a sine wave, two terms are needed:

- The sine and cosine coefficients (termed rectangular form), or
- The amplitude (r) and phase shift ( $\theta$ ) (termed polar form).

Complex numbers can do that. The complex number representation for a sine wave is termed it's phasor representation.

## Euler's Identity

The heart of phasor representation is Euler's identity:

$$
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

If you take the real part, you get cosine

$$
\operatorname{real}\left(e^{j \omega t}\right)=\cos (\omega t)
$$

Hence, the phasor representation of cosine is 1 .


## Phasor Voltages: Rectangular Form

If you multiply by a complex number and take the real part, you get both sine and cosine:

$$
\begin{aligned}
& (a+j b) \cdot e^{j \omega t}=(a+j b) \cdot(\cos (\omega t)+j \sin (\omega t)) \\
& \quad=(a \cos (\omega t)-b \sin (\omega t))+j(\cdots) \\
& \operatorname{real}\left((a+j b) \cdot e^{j \omega t}\right)=a \cos (\omega t)-b \sin (\omega t)
\end{aligned}
$$

$$
a+j b \Leftrightarrow a \cos (\omega t)-b \sin (\omega t)
$$

## Phasor Voltages: Polar Form

Similarly, if you multiply a complex exponential with a complex number in polar form, you get a cosine with a phase shift:

$$
\begin{aligned}
& (r \angle \theta) \cdot e^{j \omega t}=\left(r \cdot e^{j \theta}\right) \cdot e^{j \omega t} \\
& \quad=r \cdot e^{j(\omega t+\theta)} \\
& \quad=r(\cos (\omega t+\theta)+j \sin (\omega t+\theta)) \\
& \operatorname{real}\left((r \angle \theta) \cdot e^{j \omega t}\right)=r \cdot \cos (\omega t+\theta)
\end{aligned}
$$

$r \angle \theta \Leftrightarrow r \cdot \cos (\omega t+\theta)$

## Phasor Domain vs. Time Domain

Frequency is understood (not written) when using phasors

- Capital letters donate phasor-domain
- Lower case letters donate time-domain

Phasor Domain
$V=3-j 8$
$V=8 \angle-23^{0}$

Time Domain
$v(t)=3 \cos (20 t)+8 \sin (20 t)$
$v(t)=8 \cos \left(20 t-23^{0}\right)$

## Addition and Subtraction of Voltages

Phasor Domain
$V_{1}=3-j 8$
$V_{2}=2+j 6$
$V_{3}=V_{1}+V_{2}$
$V_{3}=5-j 2$

Time Domain
$v_{1}=3 \cos (20 t)+8 \sin (20 t)$
$v_{2}=2 \cos (20 t)-6 \sin (20 t)$
$v_{3}=v_{1}+v_{2}$
$v_{3}=5 \cos (20 t)+2 \sin (20 t)$

## Addition in Polar Form

This also works in polar form (use a calculator):

Phasor Domain

$$
\begin{aligned}
& V_{1}=7 \angle 15^{0} \\
& V_{2}=9 \angle 67^{0} \\
& V_{3}=V_{1}+V_{2} \\
& V_{3}=3.245-j 10.096
\end{aligned}
$$

$$
v_{3}=3.245 \cos (20 t)+10.096 \sin (20 t)
$$

note: V3 is found using a calculator which does complex numbers

## Phasor Voltages: Experimental

In lab, you normally express a voltage in polar form. For example, determine the following from the following singnal from an oscilloscope:

- The frequency, and
- The phasor representation of X and Y



## Frequency:

Frequency is defined as cycles per second or one over the period.

$$
f=\frac{1}{T} h 2
$$

One cycle takes 400 ms , so the frequency is

$$
\begin{aligned}
& f=\frac{\text { one cycle }}{400 \mathrm{~ms}}=2.5 h z \\
& \omega=2 \pi f=5 \pi \frac{\mathrm{rad}}{\mathrm{sec}}
\end{aligned}
$$



## Peak Voltage:

The voltage from the average to the peak $(\mathrm{Vp})$ is the amplitude:
$\mid \mathrm{XI}=14 \mathrm{~V}$
$|\mathrm{Y}|=22 \mathrm{~V}$

Volts


## Phase Shift:

The delay is the phase shift (delay corresponds to a negative angle)

$$
\theta=-\left(\frac{\text { delay }}{\text { period }}\right) \cdot 360^{0}
$$

$$
\theta_{x}=-\left(\frac{80 m s}{400 m s}\right) \cdot 360^{0}=-72^{0}
$$

$$
\theta_{y}=-\left(\frac{170 \mathrm{~ms}}{400 \mathrm{~ms}}\right) \cdot \underset{\text { Vots }}{260} 50^{0}=-153^{0}
$$



## Result:

$$
\begin{aligned}
& X=14 \angle-72^{0} \\
& Y=22 \angle-153^{0}
\end{aligned}
$$



## Gain from X to Y :

A common problem with circuit analysis is to determine the gain of a circuit at a given frequency:


Gain is output / input

$$
\begin{aligned}
& Y=G \cdot X \\
& G=\frac{Y}{X}
\end{aligned}
$$

## Gain Computations:

- The amplitude is the ratio: $|\mathrm{Y}| /|\mathrm{X}|$
- The phase is the difference: $\theta_{g}=\theta_{y}-\theta_{x}$

Similarly, with the previous data

$$
\begin{aligned}
& |G|=\frac{22 V}{14 V}=1.571 \\
& \angle G=-\left(\frac{90 \mathrm{~ms} \text { delay X to } \mathrm{Y}}{400 \mathrm{~ms} \text { period }}\right)
\end{aligned}
$$

The gain of this filter is

$$
G=1.571 \angle-81^{0}
$$




