Phasor Impedances

EE 206 Circuits I

Jake Glower

03/18/20

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Objective:

- Represent R, L, and C as a complex impedance
- Determine the impedance of RLC networks.

Resistors

From before, a current (or voltage)

$$
i(t)=a \cos (\omega t)+b \sin (\omega t)
$$

can be written in phasor form as

$$
I=a-j b
$$

The voltage produced by a current flowing through a resistor is

$$
v(t)=i(t) \cdot R
$$

or in phasor form

$$
V=I R
$$

The complex impedance of a resistor is \mathbf{R}

Resistor VI Plot:

- $\mathrm{R}=883$ Ohm
- Current is in phase with voltage for resistors.

Voltage and current are in phase for resistors

Capacitors

The current through a capacitor is

$$
i(t)=C \frac{d v(t)}{d t}
$$

If $\mathrm{v}(\mathrm{t})$ is a sinusoid:

$$
\begin{aligned}
& v(t)=a \cos (\omega t)+b \sin (\omega t) \\
& V=a-j b
\end{aligned}
$$

then the current will be

$$
\begin{aligned}
& i(t)=C \cdot \frac{d}{d t}(a \cos (\omega t)+b \sin (\omega t)) \\
& I=C \cdot(j a \omega+b \omega)=j \omega C \cdot(a-j b)
\end{aligned}
$$

The impedance is then the ratio:

$$
Z=\frac{V}{I}=\left(\frac{a-j b}{j \omega C \cdot(q-j b)}\right)=\left(\frac{1}{j \omega C}\right)
$$

Capacitor VI Plot:

- $\mathrm{Z}=-\mathrm{j} 883$ Ohms
- Current leads voltage for capacitors
$Z=\frac{1}{j \omega C}$

Inductors:

Current is related to voltage as

$$
v(t)=L \frac{d i(t)}{d t}
$$

Assume

$$
\begin{aligned}
& i(t)=a \cos (\omega t)+b \sin (\omega t) \\
& I=a-j b
\end{aligned}
$$

The voltage is then

$$
\begin{aligned}
& v(t)=L \cdot \frac{d}{d t}(a \cos (\omega t)+b \sin (\omega t)) \\
& V=L \omega \cdot(j a+b)=j \omega L \cdot(a-j b) \\
& Z=\frac{V}{I}=\left(\frac{j \omega L \cdot(a-j b)}{a-j b}\right)=j \omega L
\end{aligned}
$$

Inductor VI Plot:

- $\mathrm{Z}=+\mathrm{j} 883$ Ohms
- Voltage leads current for inductors
$Z=j \omega L$

ELI the ICE Man

ELI: Voltage (E) leads current for inductors (L)

ICE: Current (I) leads voltage (E) for capacitors

RLC Example:

$\mathrm{f}(\mathrm{Hz})$	0 Hz	100 Hz	10 kHz
$\mathrm{w}(\mathrm{rad} / \mathrm{sec})$	0	628.3	62,831
$\mathrm{R}=100 \mathrm{Ohms}$	$\mathrm{Z}=100$	$\mathrm{Z}=100$	$\mathrm{Z}=100$
$\mathrm{~L}=100 \mathrm{mH}$	$\mathrm{Z}=0$	$\mathrm{Z}=\mathrm{j} 62.83$	$\mathrm{Z}=\mathrm{j} 6283.1$
$\mathrm{C}=100 \mathrm{uF}$	$\mathrm{Z}=$ infinity	$\mathrm{Z}=-\mathrm{j} 1591$	$\mathrm{Z}=-\mathrm{j} 15.91$

RLC Networks:

What works for real numbers works for complex numbers:
Example 1: Determine the complex impdeance Zab

200 and -j 250 are in parallel:

$$
200 \|-\mathrm{j} 250=\left(\frac{1}{200}+\frac{1}{-j 250}\right)^{-1}=121.95-j 97.56
$$

This is in series with $(50+\mathrm{j} 40)$ Ohms

$$
(121.95-j 97.56)+(50+j 40)=171.95-j 57.56
$$

which is in parallel with -j 150 and 100 Ohms

$$
(171.95-j 57.56)|\mid(-j 150) \|(100)=50.30-j 27.80
$$

which is in series with $20+\mathrm{j} 30$ Ohms

$$
(50.30-j 27.80)+(20+j 30)=70.30+j 2.20
$$

answer:

$$
Z_{a b}=70.30+j 2.20 \quad \mathrm{Ohms}
$$

note: it really helps to have a calculator that does complex numbers. I recommend an HP35s or the Free 42 app on a cell phone

Example 2

Determine the complex impedance Zab

$(40-j 70) \|(30+j 50)=62.45+j 16.42$
$(62.45+j 16.42)+20=82.45+j 16.42$
$(82.45+j 16.42)|\mid(60-j 70)=48.56-j 15.34$

